

UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

Caracterización Espacial de las Propiedades Físicas del Suelo en la Cuenca Alta del Río Chirgua-Sector Potrerito, Municipio Bejuma del Estado Carabobo

Tutora: Ing. Adriana Márquez **ELABORADO POR:**

Araujo R, Julio A. Mata G, Freddy A.

Junio del 2009 AGRADECIMIENTOS

A la Universidad de Carabobo por brindarnos la oportunidad de adquirir los conocimientos durante todos estos años en nuestro desarrollo como profesionales.

Queremos agradecerle a nuestra tutora Adriana Márquez, por su dedicación, orientación y apoyo en la realización de este trabajo de grado.

A los dueños de las parcelas del sector Potrerito por permitirnos el paso, para la toma de muestras en sus propiedades.

Agradecemos al Laboratorio de Suelos de la Facultad de Ingeniería, profesores y al técnico José Guerrero por su maravillosa colaboración en la obtención de los resultados

Agradecemos al técnico del laboratorio de fluidos, Sr. Oscar, por su maravillosa ayuda en la elaboración de los resultados.

A nuestra compañera Carolina Sortino, por su valioso apoyo en todo momento de nuestra realización de este trabajo de investigación.

A la Ing. Adycar Cancino, por ser muestra fortaleza cada día y permitirnos culminar mi Trabajo de Grado exitosamente.

A todas aquellas personas que nos brindaron desinteresadamente su extraordinaria colaboración y su valioso tiempo ayudándonos a recoger las muestras en campo. ¡Mil Gracias!

DEDICATORIA

El hijo por quien te sacrificaste tus ilusiones, a cambio de su felicidad. Hoy te dedica estas cortas palabras que se que no serán las mejores, pero lo hago de corazón porque no sabes lo que hoy daría para recibir de tus labios de nuevo la bendición.

Te fuiste de mi lado. En silencio fue tu partida. Mi corazón se ha desangrado por tan súbita despedida.

Tu espíritu luchador

A la vida se aferraba. Más Dios, desesperado, a su lado te llamaba.

En ángel te has convertido. Velando por nosotros estás. Aguardando que se cumpla la cita de reunirnos en la eternidad.

Sin embargo, me parece tan lejos... Quisiera ahora poderte abrazar.

Sé que en el cielo habitas. Al lado de Dios has de estar. Aguardaré paciente el día En que nos volvamos a encontrar.

Entonces será para siempre. Nada ni nadie nos podrá separar. No temeré cuando llegue mi momento pues tu presencia me confortará.

Me esforzaré por ganar el cielo para no perderte nunca más. Mientras tanto, guía mis pasos. Ilumina mi senda, enséñame el camino.

Que tu presencia me rodee siempre hasta que se cumpla mi destino.

Mi consejo solo este: valoren a esa persona que tanto los ama, a esa persona que solo se llama madre y que no llegue a pasar por lo que yo estoy pasando llorar por ella y tratar de decirle y demostrarles el amor cuando ya no está.

Espero que en el cielo madre tu me estés viendo y sepas cuanto te quiero, cuanto te extraño y me perdones por dedicarte tan poco tiempo, porque cuanto me fuese gustado que el tiempo que estuvimos juntos fuera sido mucho más, y que fueras compartido conmigo toda mi felicidad, solo espero que algún día juntos podamos estar y ahí valorar el tiempo que en la tierra no supe aprovechar.

Te amo mamá...

Freddy A. Mata G.

ÍNDICE GENERAL

	-
INTRODUCCIÓN	1
CAPÍTULO I. EL PROBLEMA	2
Planteamiento del problema	2
Formulación del problema	4
Objetivos	5
Objetivo general	5
Objetivos específicos	5
Justificación de la investigación	6
Alcances y limitaciones	6
CAPÍTULO II. MARCO TEÓRICO	9
Antecedentes de la investigación	9

Bases teóricas	12
Proporción de tamaño de partículas o textura del suelo	12
Procedimientos según la norma ASTM de los ensayos realizados en el laboratorio	14
de suelos	
Granulometría por tamizado por vía húmeda (ASTM D422)	14
Gravedad específica (ASTM D854-58)	16
Granulometría por hidrómetro (ASTM D 3080)	18
Límites de consistencia (ASTM D 423-D424)	20
Límite líquido	20
Límite plástico	20
Permeabilidad	23
Resistencia al corte	27
Corte directo sin drenaje (ASTM D3080-04)	34
Conceptos de sistemas de información geográfica (GIS)	36
Reseña Histórica	36
Arcgis	36
ArcMap	36
ArcCatalog	37
ArcToolbox	37
Funciones de un GIS	37
Características de un sistema de información geográfica (GIS)	38
Mapas y objetos de diseño	38
Metodología de sistemas de información geográfica (GIS)	39
Procedimiento para proyecto de representación de las características físicas de suelo en ArcGis	40
Dénde querder el provecto?	40
Grandian de la compete de la confessa de detec	40
Creación de la carpeta de la geobase de datos	41
Tipo de formato de almacenamiento de datos a utilizar dentro de la geobase	41

Creación de las clases de elementos para el uso de la tierra	42
Creación de los feature dataset (conjuntos de clases de elementos) o coberturas dentro de la geobase de datos Creación de las clases de elementos (Feature Class) dentro del archivo usos de la	42 43
tierra	
Transformación de las entidades del mundo real a vectores	44
Creación de la capa de límites de parcelas dentro de la cobertura usos de la tierra.	44
Edición del feature class: Parcelas	44
Transformación de coordenadas geográficas a coordenadas XY UTM	46
Conversión del archivo de texto (.txt) a un archivo de DBase (.dbf)	48
Conversión de .txt a .xls	48
Conversión de .xls a .dbf	50
Creación de la clase de elementos (feature class) de puntos en ArcCatalog	51
Conversión del archivo .dbf a .shp	51
Creación del archivo del feature class de puntos a la geobase de datos proyecto Potrerito	52
Importación del feature class de puntos al archivo de cobertura usos de tierra	54
Visualización de la clase de elementos de puntos de muestreo en ArcMap	55
Procedimiento I: Creación de simbología de características físicas de suelo mediante polígonos Creación de archivo de resultados en MS excel que contenga las coordenadas de los puntos y los valores de las propiedades físicas asociadas a cada	56 56
punto	
Conversión del archivo de MS excel a DBASE	57
Exportación de la tabla DBASE a la geobase de datos	59
Creación de la clase de elementos (feature class) de puntos dentro de la geobase de datos	60
Importación de la clase de elementos de puntos hacia el archivo de cobertura ubicado dentro de la geobase de datos	63
Creación de un campo común en el archivo parcelas y el archivo de puntos dentro de la cobertura.	64
Unión de tablas de los atributos de la clase de elementos puntos y la clase de elementos parcelas	66
Visualización mediante simbología de las propiedades físicas	68

Creación de mapas de propiedades físicas
Añadir mapa de diseño (layout) a otro documento (opcional)
Procedimiento II: Creación de simbología de características físicas de suelo mediante puntos
Visualización mediante simbología de las propiedades físicas
Análisis estadístico
Procedimiento para el uso de Statgraphics
Uso de diferentes tipos de ventanas
Comparación de varias muestras
CAPÍTULO III. MARCO METODOLÓGICO
Tipo de investigación
Diseño de investigación
Población
Muestra
Determinación del tamaño de muestra
Primera etapa
Segunda etapa
Técnicas de recolección de datos
Procedimientos de selección de la muestra en el enfoque cuantitativo
Criterios de selección de los sitios de muestreo de suelos
Criterios para la selección de la escala del levantamiento de suelos
Criterios para la selección de la profundidad del muestreo
Criterios para la selección de las propiedades físicas de suelos
Criterios para garantizar calidad de la muestras
Etapas de la investigación
Fase I: Realización de pruebas de campo, captación de muestras y ensayos de
laboratorio
Fase II: Representación de las propiedades físicas de cada una de las muestras

tomadas en cam	no		
tomadas en cam	μο	 	

CAPÍTULO IV. ANÁLISIS DE RESULTADOS	104
Determinar relaciones de fases y tamaño de partículas realizando ensayos de	104
granulometría por tamizado, hidrómetro y ensayos de límites de consistencia	
Obtener propiedades físicas del suelo mediante ensayos de permeabilidad,	135
resistencia al corte	
Representar las propiedades físicas del suelo mediante herramientas contenidas	169
en software de Sistemas de Información geográfico (SIG) en la cuenca alta del	
Río Chirgua- Sector Potrerito, Municipio Bejuma- Estado Carabobo	

CON	NCLUSIONES	170
REF	ERENCIAS BIBLIOGRÁFICAS	171
APÉ	NDICES	174
A.	Carta de plasticidad para clasificación de suelos de partículas finas en	
	laboratorio capa a 20cm	124
B.	Carta de plasticidad para clasificación de suelos de partículas finas en	126
	laboratorio capa a 40cm	
C.	Tabla de resultados de las propiedades físicas del suelo capa a 20cm	137

E. Tabla de esfuerzo critico vs diámetro de partículas medio capa a 20cm..... 156

ÍNDICE DE TABLAS

Tabla

1	Clases de tamaño de partículas	13
2	Formato para granulometría por tamizado	15
3	Formato para ensayo de gravedad específica	17
4	Formato para granulometría por hidrómetro	19
5	Formato para límites de consistencia	22
6	Formato para Ensayo de Permeabilidad	27
7	Formato para Ensayo de Permeabilidad	35
8	Selección de las parcelas agrícolas	85
9	Selección de los sitios de muestreo	87
10	Criterios para categorizar tipos de levantamientos de suelo	94
11	Elementos Geológicos Especiales y Condiciones Consideradas en	
	Estudios de Oficina y Observaciones de Campo	97
12	Diámetro de Muestras Mínimo o Peso Seco para Pruebas de	
	Laboratorio Seleccionadas	100
13	Ensayos Realizados en el Laboratorio de Suelos	10
14	Tabla de Resultados de Ensayos Realizados en el Laboratorio	100
15	Cronograma de Actividades	10′
16	Medias con intervalos de confianza del 95.0% para Gravedad	
	Específica	11(
17	Método: 95.0 porcentaje LSD para Gravedad Específica	11(
18	Comparación Múltiple para Gravedad Específica	11
19	Medias con intervalos de confianza del 95.0% para Porcentaje de	
	Arena	113
20	Método: 95.0 porcentaje LSD para porcentaje de Arena	113
21	Comparación Múltiple para Porcentaje de Arena	114
22	Medias con intervalos de confianza del 95.0% para Porcentaje de Limo	11
23	Método: 95.0 porcentaje LSD para Porcentaje de Limo	11
24	Comparación Múltiple para Porcentaje de Limo	11′

25	Medias con intervalos de confianza del 95.0% para Porcentaje de
	Arcilla
26	Método: 95.0 porcentaje LSD para Porcentaje de Arcilla
27	Comparación Múltiple para Porcentaje de Arcilla
28	Medias con intervalos de confianza del 95.0% para Límite Líquido
29	Método: 95.0 porcentaje LSD para Límite Líquido
30	Comparación Múltiple para Límite Líquido
31	Medias con intervalos de confianza del 95.0% para Límite Plástico
32	Método: 95.0 porcentaje LSD para el Límite Plástico
33	Comparación Múltiple para el Límite Plástico
34	Medias con intervalos de confianza del 95.0% para el Índice de
	Plasticidad
35	Método: 95.0 porcentaje LSD para el Índice de Plasticidad
36	Comparación Múltiple para el Índice de Plasticidad
37	Angulo de Fricción drenado para arenas y limos
38	Medias con intervalos de confianza del 95.0% para resistencia al corte
	estado de carga 5Kg
39	Método: 95.0 porcentaje LSD para resistencia al corte estado de carga
	5Kg
40	Comparación Múltiple para resistencia al corte estado de carga 5Kg
41	Medias con intervalos de confianza del 95.0% Resistencia al Corte
	Estado de carga 15 Kg
42	Método: 95.0 porcentaje LSD Resistencia al Corte Estado de carga 15
	Kg
43	Comparación Múltiple Resistencia al Corte Estado de carga 15 Kg
44	Medias con intervalos de confianza del 95.0% para la cohesión
45	Método: 95.0 porcentaje LSD para la cohesión
46	Comparación Múltiple para la cohesión

47	Medias con intervalos de confianza del 95.0% para Ángulo de fricción.	150
48	Método: 95.0 porcentaje LSD para Ángulo de fricción	150
49	Comparación Múltiple para Ángulo de fricción	151
50	Medias con intervalos de confianza del 95.0 para Porosidad	157
51	Método: 95.0 porcentaje LSD para Porosidad	157
52	Comparación Múltiple para Porosidad	158
53	Medias con intervalos de confianza del 95.0% para % de Humedad	
	inicial	160
54	Método: 95.0 porcentaje LSD para % de Humedad inicial	160
55	Comparación Múltiple para % de Humedad inicial	161
56	Medias con intervalos de confianza del 95.0% para Relación de Vacios	163
57	Método: 95.0 porcentaje LSD para Relación de Vacios	163
58	Comparación Múltiple para Relación de Vacios	164
59	Medias con intervalos de confianza del 95.0% para Permeabilidad	165
60	Método: 95.0 porcentaje LSD para Permeabilidad	166
61	Comparación Múltiple para Permeabilidad	167
62	Clasificación de los Suelos según la Permeabilidad	168
63	Clasificación de los Suelos según sus Coeficientes Permeabilidad	168

ÍNDICE DE FIGURAS

Figura		Pág
1	Coeficiente de permeabilidad	25
2	Esquema de la caja para la prueba de corte directo	29
3	Envolvente de falla. Curva de Resistencia intrínseca	30
4	Estado de tensión alrededor de un punto	31
5	Estados de tensión máxima alrededor de un punto	32
6	Esfuerzos en el plano de falla del suelo	33
7	Puntos De Entrada en Formato TXT	46
8	Coordenadas De Puntos UTM en WGS84.TXT	48
9	Conversión De Archivos .TXT a .XLS	49
10	Selección de Coordenadas a Transformar	50
11	Previsualización de Coordenadas N1 y N2	51
12	Create Feature Class from XY Table	52
13	Selección del Sistema de Coordenadas	53
14	PUNTOSWGS84 Con el Sistema de Coordenadas	54
15	Capa de Puntos de Muestreo en el Sector Potrerito-Cuenca del río	
	Chirgua- Estado Carabobo	55
16	Tabla de resultados proyecto Potrerito Potrerito	57
17	Selección de los Puntos, Coordenadas y Resultados	58
18	Tabla de Resultados en Formato.dbf	59

19	Ventana Table to Table	60
20	Create Feature Class From XY Table	61
21	Selección de Coordenadas Para la Clase de Elementos de la Tabla	62
22	Selección del Sistema de Coordenadas	63
23	Tabla de Atributos de Los Puntos de Muestreos a 10cm	65
24	Tabla de Atributos de Las Parcelas	66
25	Unión de Tablas de Atributos de la Clase de Elementos Puntos	67
26	Unión de Tablas de Atributos de la Clase de Elementos Parcelas	68
27	Creación de Mapas de Propiedades Físicas Representación en	
	Gradación De Colores	72
28	Ventana principal de Statgraphics	73
29	Diferentes Ventana Statgraphics	74
30	Ventana de Entradas de datos statgraphics	76
31	Ventana de Introducción de datos	77
32	Comparación de varias muestras	78
33	Resultados Statgraphics	79
34	Muestreo probabilístico por racimos. Sector Potrerito Cuenca del río	
	Chirgua. Estado Carabobo	87
35	Puntos de Muestreo probabilístico por cuadriculas. Sector Potrerito	
	Cuenca del río Chirgua. Estado Carabobo	89
36	Esquemas ilustrativos de los diferentes sistemas de muestreos de suelos	92
37	Medias y 95% de FISHER y LCD para Gravedad Específica	109
38	Medias y 95% de FISHER y LCD para porcentaje de Arena	112
39	Medias y 95% de FISHER y LCD para Porcentaje de Limo	115
40	Medias y 95% de FISHER y LCD para Porcentaje de Arcilla	118
41	Dendograma. Método del vecino más cercano, Euclideana Cuadrada	122
42	Gráfico de plasticidad de Casagrande. Lambe y Whitman	123
43	Límites de Atterberg e índices asociados. Lambe (1987)	124

44	Carta de plasticidad para clasificación de suelos de partículas finas en							
	Laboratorio							
45	Medias y 95% de FISHER y LCD para Límite Líquido							
46	Medias y 95% de FISHER y LCD para Límite Plástico							
47	Medias y 95% de FISHER y LCD para el Índice de Plasticidad							
48	Medias y 95% de FISHER y LCD para resistencia al corte estado de							
	carga 5Kg							
49	Medias y 95% de FISHER y LCD Resistencia al Corte Estado de							
	carga 10 Kg							
50	Medias y 95% de FISHER y LCD Resistencia al Corte Estado de							
	carga 15 Kg							
51	Medias y 95% de FISHER y LCD para la cohesión							
52	Medias y 95% de FISHER y LCD para Ángulo de fricción							
53	Relación Permeabilidad vs relación de vacíos. Lambe y Whitman.							
	(1994)							
54	Permeabilidad vs Relación de vacíos							
55	Relación Esfuerzo Crítico Vs. d50. Pierre Y. Julien (1995)							
56	Relación Esfuerzo Crítico Vs. d50							
57	Medias y 95% de FISHER y LCD para Porosidad							
58	Medias y 95% de FISHER y LCD para % de Humedad inicial							
59	Medias y 95% de FISHER y LCD para Relación de Vacios							
60	Medias y 95% de FISHER y LCD para Permeabilidad							

INTRODUCCIÓN

En el presente trabajo se pretendió caracterizar espacialmente las propiedades físicas del suelo en la cuenca alta del río Chirgua- Sector Potrerito, Municipio Bejuma del Estado Carabobo, en donde se generarán mapas georeferenciados que permitirán predecir las variaciones de dichas propiedades, utilizando software de sistemas de información geográfica (SIG) y tabulando los resultados que a su vez serán cargados a la base de datos del software Arcgis versión 9.2, haciendo uso de una imagen Raster hoja 65461 SO suministrada por la Corporación de Desarrollo de la Región Central (CORPOCENTRO) del estado Carabobo.

Se realizaron ensayos en el laboratorio de suelos de la Universidad de Carabobo de muestras de suelo que fueron obtenidas en campo a capas de 20 y 40cm, resultados que posteriormente se verán reflejados en mapas de georeferenciados. La caracterización del área en estudio desde el punto de vista hidrológico pretendio corregir y mejorar las prácticas de manejo y uso del suelo y garantizar el desarrollo sostenible de la producción agrícola, actividad predominante en la región.

Este proyecto se divide en cuatro capítulos. El primero describe el planteamiento del problema, los objetivos, la justificación, los alcances y las limitaciones de la investigación. El segundo presenta el marco teórico, que está constituido por los antecedentes y las bases teóricas que sustentan la investigación. El tercero describe de forma detallada el Marco Teórico que describe el tipo de investigación, su diseño, la metodología utilizada, la técnica de recolección, procesamiento y análisis de datos. Y por último, el cuarto capítulo hace referencia al análisis de los resultados y conclusiones.

CAPÍTULO I

EL PROBLEMA

Planteamiento del problema

Los desiertos son fenómenos naturales relacionados con el clima de la tierra. Es el caso del Sáhara, del desierto de Gobi, en Asia Central, o del Takla Makan, en China Oriental. No se debe confundir el término desertificación con el término desertización. La Organización de las Naciones Unidas (ONU), en la Resolución 3337 (XXIX) del 14 de diciembre de 1974, planteo que los procesos de desertización son completamente naturales y ha existido siempre en el planeta a poco que las condiciones atmosféricas y geológicas propiciaran en determinados lugares una escasez de lluvia y la consecuente ausencia de suelo fértil; por el contrario la desertificación es el proceso de degradación del suelo en zonas áridas, semiáridas y subhúmedas secas del globo, por acción directa de las actividades humanas. El problema adquiere una dimensión global si se tiene en cuenta que el porcentaje de tierras secas del mundo (áridas, semiáridas y subhúmedas secas) está próximo al 50% del conjunto de superficie terrestre continental, y que la mayoría de estas tierras se encuentran en países en vías de desarrollo (Asia, África y América del Sur). De los aproximadamente 6.200 millones de hectáreas de tierras secas existentes en el globo, menos del 1% (unos 900 millones de hectáreas) son desiertos hiperáridos; el resto son tierras secas que se han convertido en desierto debido a las actividades humanas. En estas zonas vive alrededor de la quinta parte de la población mundial.

El origen del problema de la desertificación se encuentra en el desarrollo de actividades humanas (más concretamente: la agricultura, pastoreo excesivo, actividades industriales) que no han respetado la capacidad de carga del medio. Todas estas actividades mal desarrolladas han favorecido la expansión de los desiertos con la consiguiente pérdida de suelo potencialmente útil para su explotación.

Según el Ministerio del Poder Popular para el Ambiente de Venezuela, (2009), cuenta con una superficie significativa de tierras áridas, semiáridas y subhúmedas secas, abarcando aproximadamente el 45% del territorio.

La mayoría de las zonas rurales en Venezuela no han escapado a la problemática de deterioro y erosión de los suelos, mucho menos aquellos donde la producción agrícola es la actividad predominante, como es el caso de la localidad de Chirgua, ubicada en el municipio Bejuma del estado Carabobo.

En Chirgua las principales causas del deterioro y erosión del suelo son: el trabajo excesivo del suelo especialmente cuando se lleva a cabo en condiciones de baja humedad, los sistemas de producción agrícola convencionales que queman el rastrojo de la cosecha anterior y dejan el suelo desnudo durante la estación lluviosa y el uso de fertilizantes y pesticidas en grandes cantidades así como el riego excesivo;

traen como consecuencias la destrucción de hábitats naturales, la perdida de la capacidad del suelo para realizar sus funciones lo cual se traduce en infertilidad, reduce el espesor capaz de almacenar humedad limitando así recargar los acuíferos de los cuales nos abastecemos.

Dicha problemática es generada por el desconocimiento de las propiedades físicas de los suelos que tienen los agricultores de chirgua. Para generar la información faltante es necesario implementar procesos agilizados por medio del uso de sistemas de información geográficas para construir modelos que permitan predecir las variaciones de ciertas propiedades del suelo.

El Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) prevé que para 2025 la tierra cultivable en el mundo habrá disminuido dos tercios, lo que supondrá un serio problema para la agricultura, que afectará a más de 250 millones de personas de 100 países. La Convención de las Naciones Unidas para combatir la Desertización (UNCCD), en una asamblea en el año 2004, redactó un documento en el que afirmaba que este fenómeno contribuía a la inseguridad alimentaria, al hambre, a la pobreza y que podía ser fuente de tensiones sociales, económicas y políticas.

Para mejorar la calidad y tener un aprovechamiento de las potencialidades de los suelos es necesario emplear alternativas tecnológicas de caracterización espacial que permitan desarrollar medidas agrícolas de conservación y planificar un adecuado manejo y uso del recurso.

Con esta investigación se pretendió generar un estudio en la cuenca del rio chirgua-sector potrerito, que busque georeferenciar las características y propiedades físicas del suelo mediante software de sistemas de información geográfica.

Formulación del problema

El uso de los suelos para fines de producción agropecuaria genera como consecuencia la erosión de los mismos, lo cual se debe en gran parte al desconocimiento de las propiedades físicas de los suelos por parte de los agricultores. Para ellos se plantea la necesidad de caracterizar el suelo para generar una base de datos que permita validar modelos de pronósticos de erosión.

Por lo anteriormente descrito y conscientes de la importancia que representa la producción agrícola en la zona se ha considerado conveniente plantear como Trabajo Especial de Grado "Caracterización espacial de las propiedades físicas del suelo en la cuenca del rio Chirgua-sector Potrerito, municipio Bejuma del Estado Carabobo".

Las propiedades físicas mencionadas contribuirán a generar una base de datos que permitirán determinar la capacidad de retención de agua en el suelo sin alterar su estructura interna y obtener la resistencia del suelo ante los procesos de erosión hídrica originado por las continuas actividades agrícolas en la zona.

Objetivos

Objetivo General

Caracterizar espacialmente las propiedades físicas del suelo en la cuenca del Río Chirgua- Sector Potrerito, Municipio Bejuma- Estado Carabobo.

Objetivos Específicos

1.- Determinar relaciones de fases y tamaño de partículas realizando ensayos de granulometría por tamizado, hidrómetro y ensayos de límites de consistencia.

2.- Obtener propiedades físicas del suelo mediante ensayos de permeabilidad, resistencia al corte.

20

3.- Representar las propiedades físicas del suelo mediante herramientas contenidas en software de Sistemas de Información geográfico (SIG) en la cuenca del Río Chirgua- Sector Potrerito, Municipio Bejuma- Estado Carabobo.

Justificación de la investigación

Con la finalidad de optimizar el aprovechamiento de las potencialidades y recursos de cada región que permitan adelantar procesos integrales de desarrollo local y territorial; se plantea la necesidad de caracterizar el área de estudio en cuanto al aspecto hidrológico, por ser éste uno de los principales factores que afectan las actividades agrícolas, actividad predominante en la región.

A su vez, se desea generar una base de datos que permita validar modelos de pronóstico de erosión de suelos agrícolas en desarrollo por parte de la universidad de Carabobo en la cuenca del río Chirgua.

Esta investigación ampliará los conocimientos sobre modelos matemáticos de procesos hidrológicos y ambientales, contribuyendo a la actualización del contenido de las asignaturas adscritas al área de Ingeniería Ambiental.

Alcances y Limitaciones

• Se cubrirá el periodo Húmedo (Octubre-marzo) para realizar la investigación.

 Se investigará el área correspondiente al sector Potrerito Cuenca del Río Chirgua, Municipio Bejuma Estado Carabobo. • El estudio abarcará la caracterización de las propiedades físicas de suelos; tamaños de partículas, relaciones de fases, permeabilidad y resistencia al esfuerzo cortante en parcelas agrícolas ubicadas en el Sector Potrerito.

 Se podrán realizar mediciones en campo motivado a que los dueños de las parcelas han autorizado la permanencia y seguridad de los equipos en las instalaciones donde se efectuará el muestreo.

• La zona seleccionada para el estudio permitirá el desarrollo del muestreo debido a que brinda seguridad tanto para la unidad de transporte como para las personas involucradas en el desarrollo del muestreo en campo.

Se podrán analizar las muestras traídas de campo en el laboratorio de suelos motivado a que se cuenta con el apoyo de las autoridades universitarias.

CAPÍTULO II

MARCO TEÓRICO

Antecedentes de la Investigación

Becerra M., Carolina et al (2001) "Caracterización espacial la compactación en terrenos agrícolas de CIAT, Colombia". Esta investigación perseguía los siguientes objetivos: determinar la variabilidad espacial de las propiedades físicas, generar mapas preliminares de compactación para las propiedades, bajo una nueva propuesta metodológica fundamentada en la matriz de Herrera y Madero (2000), procesar datos bajo el enfoque de la Geoestadística y los sistemas de información geográfica.

Estos estudios representan un aporte metodológico y suministran información acerca de una base de datos donde se aplican métodos de Geoestadística, sistemas de información geográfica y la técnica de superposición en Arc-view, para las propiedades físicas ya mencionadas.

Obando et al (2006) "Variabilidad espacial de las propiedades físicas y químicas del suelo en un paisaje productivo localizado en la granja experimental Tesorito de la universidad de CALDAS". En esta investigación se desarrolló un proyecto con el objetivo de determinar la variabilidad espacial de las propiedades físicas y químicas del suelo en un paisaje productivo localizado en la granja experimental "Tesorito". Se realizó un muestreo sistemático en el cual los puntos se georeferenciaron con un GPS. Para el análisis estadístico se utilizaron los software statgraphics plus v 2.0 y SPSS 9.0, los mapas de Contorno se calcularon utilizando un paquete geoestadistico GS+ versión 5.3b.

De lo antes descrito se puede decir que este estudio aporta una herramienta esencial para el desarrollo de esta investigación como lo es el uso de software STATGRAPHICS, el cual permite hacer análisis estadísticos. También es de ayuda para establecer comparaciones en cuanto a las variables y propiedades físicas del suelo.

Cayama E, Anyeli M et al (2008) "Caracterización espacial de propiedades físicas que influyen en la resistencia del suelo a la erosión hídrica. Cuenca del río chirgua- sector potrerito, Venezuela". En esta investigación se caracterizó espacialmente las propiedades físicas del suelo en la cuenca del Río Chirgua- Sector Potrerito, recolectando muestras en estratos de 20 y 40 cm, durante el cultivo del maíz. Estas muestras fueron clasificadas según el Sistema Unificado de Clasificación de los Suelos, obteniendo que el sector tiene presencia de suelos de tipo limo orgánico (OL) y arcilla limosa (CL), cuya distribución granulométrica es de arena entre 25.2 y 49.7%, limo entre 28 y 42 % y arcilla entre 15 y 32.7 %; éstos suelos presentan resistencia en estado seco de ligera a media con dilatancia lenta y tenacidad ligera a media. Se obtuvieron propiedades físicas, encontrando porosidad entre 0,26 y 0,54, relación de vacíos entre 0.40 y 0.76, y en consecuencia permeabilidad baja 1 a 5.33 mm/hora, contenido de humedad entre 6.27-19.46% y gravedad específica entre 2,5 y 2,76. La resistencia al corte se estudió bajo tres cargas normales (0.26, 0.40 y 0.54 kgf/cm²), arrojando valores para ángulo de fricción para arcillas limosa 17 y 18.10° y limo orgánico 18.11 y 30.46°, cohesión 0.24 y 0.29 kgf/cm² y en los suelos arcillo limosos 0.30 y 0.32 kgf/cm². Estas propiedades físicas contribuirán a generar una base de datos que permitirá determinar la capacidad de retención de agua en el suelo sin alterar su estructura interna y obtener la resistencia del suelo ante los procesos de erosión hídrica originado por las continuas actividades agrarias en la zona. Las mismas fueron representadas en mapas georeferenciados realizados con el sistema de información geográfico ArcGIS versión 9.2.

Benavides A, Arnubis J et al (2008) "Caracterización espacial de propiedades físicas que influyen en la resistencia del suelo a la erosión hídrica. Cuenca del río chirgua- sector potrerito, Venezuela". En esta investigación se caracterizó espacialmente las propiedades físicas del suelo en la cuenca del río chirgua- sector cariaprima, recolectando muestras en estratos de 20 y 40 cm, durante el cultivo del maíz. Con un total de 63 puntos muestreados en el sector se encontró que el suelo es de grano fino pues el 100% del suelo pasa el tamiz nº 4 (4,70 mm) y más del 50% pasa el tamiz nº 200 (0,074 mm), posee aproximadamente presencia de limos entre 31% y 53,43 %, arcilla alrededor del 10,52% y 39.06 %, arena entre 24.31% y 41,13%. Los límites de consistencia de atterberg variaron de la siguiente manera; límite líquido (ll) 16% a 44,7%; límite plástico (lp) entre 14,97% y 42,34%. índice de plasticidad (Ip) entre 0,30% y 11,99%. De acuerdo con el sistema de clasificación unificado de clasificación de suelos, la combinación de ll vs ip, arrojó que la mayoría de los puntos caen próximos a la línea a, por lo tanto se consideran limos orgánicos de baja plasticidad (Ol), el resto cae por encima de la línea a, próximas a ésta, lo cual indica que son arcillas limosas de baja plasticidad (cl). Los puntos se ubicaron próximos a la línea a sus propiedades aproximarse más a las de los limos orgánicos. La permeabilidad varió en el orden de 10⁻⁵ y 10⁻⁶ cm/hora. El contenido de humedad varió entre 5,02% y 20,37%. La porosidad, la cual es una relación volumétrica, representada por el volumen de vacío entre el volumen total de la muestra de suelo no perturbada varió entre 0,31% y 0,43%. La relación de vacíos, la cual es también una relación volumétrica, volumen de vacíos entre el volumen de sólidos, varió entre 0.40% y 0.88%. La gravedad específica varió entre 2,60% y 2,70%. La cohesión en la zona de acuerdo a los estudios realizados se encuentra entre $0.23 \text{ y} 0.40 \text{ kgf/cm}^2 \text{ y}$ el ángulo de fricción (ϕ) alrededor de 24° y 39° que representa que arcillas medianas y limos arcillosos. La resistencia al corte varió para una profundidad de 20cm entre 0,32 y 0,48 kgf/cm² y para una profundidad de 40cm los valores estaban en un rango de 0.30 a 0,51 kgf/cm². Los valores del tamaño de partícula medio (d_{50}) , obtenidos de los ensayos de laboratorio realizados, que corresponde al valor del diámetro menor que la abertura del tamiz # 200 por lo cual se concluye que más del 50% corresponde a un suelo fino. Estas propiedades fueron representadas en mapas georeferenciados realizados con el sistema de información geográfico arcGis versión 9.2.

Bases Teóricas

Proporción de tamaño de partículas o textura del suelo

La proporción relativa de los variados tamaños de partículas en el suelo es conocida como la distribución del tamaño de partículas o más comúnmente, textura del suelo. La textura es considerada una de las más importantes propiedades físicas del suelo y afecta a casi todas las otras propiedades físicas, químicas y biológicas.

Según T. William Lambe (2006), los métodos habituales para la determinación de los tamaños de las partículas de un suelo son el análisis granulométrico por tamizado para partículas de tamaño superior a aproximadamente 0.06mm y el análisis por hidrómetro o por sedimentación para partículas más pequeñas.

Las partículas minerales son clasificadas en diferentes clases o fracciones de tamaño. (Ver Tabla 1)

Tabla 1. Clases de tamaño de partículas

FRAC	DIÁMETRO (MM)				
CIÓN					
Grava	2mm ó 4.76mm a 15 cm.				
Arena	0.06mm (ó 0.076mm a 2.0mm (ó				
	4.76mm)				
Limo	0.002 a 0.06mm (ó 0.074 mm)				
Arcilla	<0.002				

Fuente: Lambe y Whitman, Mecánica de los Suelos. (1994)

Las fracciones de arena y limo constituyen el esqueleto del suelo. Estas fracciones están primordialmente compuestas por materiales rocosos fragmentados que son inertes desde un punto de vista químico (no presentan reactividad). Por el contrario, las partículas de arcilla son, en conjunto con la materia orgánica, las responsables de la mayoría de las reacciones químicas que ocurren en el suelo. Otras características importantes de estas partículas es que son materiales plásticos, muy cohesivos e impermeables (capaces de absorber gran cantidad de agua e iones disueltos).

Un determinado suelo u horizonte presenta una proporción de arena, limo y arcilla, la cual puede ser expresada en forma de porcentajes; los cuales son posibles de caracterizar en "clases texturales". Estas clases texturales van desde arenosas (mayor proporción de la fracción arena) hasta arcillosas (mayor proporción de la fracción arcilla). Se considera que los mejores suelos son aquellos que poseen entre 10 y 20% de arcilla y con montos de arena y limo en rangos similares

Procedimientos según la norma ASTM de los ensayos realizados en el laboratorio de suelos

Granulometría por tamizado por vía húmeda (ASTM D422)

1. Secar una cantidad representativa de material en el horno por 24 horas.

Lavar 200gr de suelo sobre el tamiz Nº 200, hasta que el agua salga clara.

3. Colocar el material retenido en el tamiz Nº 200 en una bandeja y llevar al horno por 24 horas.

4. Pesar por separado, los tamices (#4, #10, #20, #40, #100,#200) y el plato, vacíos y limpios

5. Llevar la muestra al juego de tamices y agitarlo por 10 minutos, utilizando la tamizadora mecánica

6. Pesar cada tamiz con su fracción de suelo retenido, incluyendo el plato.

Este ensayo se realiza con una muestra de 800 gramos aproximadamente, este material se lavo sobre el tamiz 200 para eliminar la materia orgánica y el suelo más fino. El material retenido sobre el tamiz 200 se coloca en el horno hasta que se seque, esta es la muestra que se lleva a la tamizadora con el siguiente orden te tamices: 3/8'', N $_{\text{P}}$ 4, N $_{\text{P}}$ 10, N $_{\text{P}}$ 20, N $_{\text{P}}$ 40, N $_{\text{P}}$ 100 y N $_{\text{P}}$ 200. Se pesa el material retenido sobre cada tamiz para especificarlo en el formato (columna A), con este se calcula el peso retenido acumulado (columna B) que es la sumatoria de el material retenido en cada tamiz. En la columna C se expresa el porcentaje retenido acumulado parcial, este se calcula de la siguiente manera:

% Ret acum (parcial) = peso retenido acumulado * 100/ peso de fracción fina

La columna D es el porcentaje pasante parcial y viene dado por:

% pasante parcial = 100 - % Ret acum

El porcentaje retenido acumulado total (columna E) se calcula de la siguiente manera:

% Ret acum (total) = 100 - % pasante total

Para calcular el porcentaje pasante total (columna F) se utiliza la formula:

% pasante total = % pasante parcial * % pasante tamiz/100. (Ver tabla 2).

111111					ENS	AYO	DE GRAN	ULON	IETRIA		Contraction of the second			
Sect	ог								Fecha:					
Situa	sción													
iuro	o Nº				Calicata Nº:			Coordenada o	le la calicata:					
							-							
rot	undk	dad:							Laboratorio:	Suelos-UC				
_						F	ARCIAL			TAL	-			
ട്ടാ	Mue	stra To	tal (g)		A	Peso	с р		E	F	-			
			Tamiz Diámetro		Peso Retenido	Retenido	% Retenido Acum.		% Retenido					
_			usado	en mm	(g)	Acum.(g)		% Pasante	Acum.	% Pasante	Peso Muestra (g)			
	can	too dra	4" 3"	76.6					l		Pm= (Fraccion Gruesa)			
ł	pie		2 34"	63,5							1			
			2″	50,8							Factor Fo			
		_	1%"	38,1							F _o =100/Pm			
		ŝ.	1"	25,4							F ₀ =			
		8	*"	19,1										
.			%" 3/8"	12,7							C = B x Fo			
	9		3/0	6.35							0 - 100 -C			
	8	Ē	Nº4	4,76							-			
		-	N*8	2,38										
ř	8		N°10	2										
	ŧ	٥.	N°10	2							Peso Muestra (g)			
			N*16	1,19							(Fraccion Fina)			
		Ę.	N°30	0,84							Pm=			
		ŝ	N°40	0,42							Factor F1			
.			N°50	0,297							F1 = 100/Pm			
			N°70	0,21							F1 =			
	æ		N°100	0,177							C-BY FO			
Ē	Part 1	Ē	N°200	0,074							D = 100 -C			
ato	s Re	tenid	DS											
R	= Ret	tenide	en el Tam	niz N°10=			%							
P	Pas	ante	oor el Tami	z N°10 =			%							
							Calculos	Calculos						
	0/D /	100		Fraccion Gru	esa		Ff - 9(B/100 -		Fraccion	Fina				
g =	96 K/	100 =					Ff = %P/100 =							
= C x Fg							F = D x Ft							
F = 100 - E					E = 100 - F									
Realizado por:					Calculado por:			Aprobado po	r:					

Tabla 2. Formato para granulometría por tamizado.

Fuente: Araujo, J.; Mata, F. (2009)

Gravedad específica (ASTM D854-58)

- 1. Secar una cantidad representativa de material en el horno por 24 horas.
- 2. Pesar 50 gr de material que pase por el tamiz Nº 200

3. Colocar el material en un balón aforado (anotar características del mismo), agregar agua destilada hasta el cuello del balón y agitar

4. Colocar el balón con la mezcla a baño de maría, agitar periódicamente hasta que se eliminen los espacios de vacío.

5. De acuerdo a las características (balón de 500ml con temperatura entre 20°C-30°C y balón de 250ml entre 25°C y 35°C), tomar tres medidas de peso a diferentes temperaturas.

La capacidad del picnómetro varía entre 250cc y 500 cc, la tara del picnómetro es el peso del picnómetro vacio, Se pesan 50 gramos de la muestra del suelo seco (Wo). Se pesa el picnómetro con agua y suelo después de realizar el ensayo y este es el peso W1. De la curva de calibración del picnómetro utilizado se obtiene el peso del picnómetro más agua a la temperatura del ensayo este es W2. (Ver Tabla 3)

Ya con los datos obtenidos en el ensayo podemos calcular la gravedad especifica mediante la aplicación de la formula (1) y la gravedad especifica a una temperatura de 20 ° con la formula (2)

$$Gs = \frac{W_0}{W_0 + W2 - W1} (1)$$

 $Gs20^{\circ} = Gs \times FactorK(2)$

El factor K depende de la temperatura del ensayo y su valor esta tabulado.

	ENSAYO DE GRAVEDAD ESPECIFICA EN SUELOS								
Parcela:				Fecha de mue:	streo:				
Situación:	-								
Surco №:	Calicata Nº:		-	Coordenada d	e Calicata:				
Profundidad:	Laboratorio:	Suelos-UC	16						
Ensayo de Gravedad Específica en suelos (ASTM D854-06)									
PROFUNDIDAD EN cm.									
N° DE LABORATORIO									
PICNOMETRO N°									
CAPACIDAD PICNOMETR	tO cm3								

Tabla 3. Formato para ensayo de gravedad específica.

Fuente: Araujo, J.; Mata, F. (2009)

Granulometría por hidrómetro (ASTM D 3080)

- 1. Secar una cantidad representativa de material en el horno por 24 horas.
- 2. Pesar 50 gr de material que pase por el tamiz Nº 200

3. Agregar 125ml de una solución defloculante en un bicker de 600ml y dejar reposar 24 horas

4. Agitar por 5 minutos la mezcla (defloculante-suelo) en una batidora y agregar agua destilada hasta la marca del vaso.

5. Colocar la mezcla agitada en un cilindro graduado de 1000ml y completar con agua destilada hasta la marca.

6. Agitar manualmente toda la mezcla y comenzar a tomar las lecturas con el hidrómetro 152-H y con el termómetro a (1min, 2min, 4min, 15min, 30min, 1hora, 2horas, 4 horas, 24 horas y 48 horas).

Durante la realización del ensayo se debe anotar la temperatura (columna 4) y la lectura de hidrómetro (columna 5) en cada uno de los siguientes tiempos: 1, 2, 4, 15, 30, 60, 120, 240, 1440 minutos (columna 3). Estas lecturas se deben corregir por menisco que para el hidrómetro ASTM-152-H es 1g/l y por temperatura (columna 9) que se encuentran tabuladas. En la columna 6 va la lectura del hidrómetro más la corrección por menisco, La profundidad efectiva (columna 7) depende de la lectura del hidrómetro corregida por menisco, El valor de K (columna 8) lo obtenemos con la gravedad específica y la temperatura, La columna 8 es el diámetro de la partícula y se obtiene aplicando la siguiente fórmula:

 $D = K^*$

Para corregir la lectura del hidrómetro por defloculante (columna 11) se utiliza la siguiente formula= R-Cd \pm Ct. El porcentaje más fino se divide en: parcial (columna 12) que se calcula multiplicando (100/45) * la columna 11 y total (columna 13) que es 0,6164 * el porcentaje parcial. (Ver Tabla 4)

	ENSAYO DE GRANULOMETRIA-04	
Sector	Fecha de muestreo: 18	
Situación:		
Surco Nº:	Calicata Nº: Coordenada de Calicata:	
Profundidad:	Laboratorio: Suelos-UC	

Tabla 4. Formato para granulometría por hidrómetro.

Fuente: Araujo, J.; Mata, F. (2009)

Límites de consistencia (ASTM D 423-D424)

Límite líquido

1. Ajustar la caída de la copa para que sea exactamente de más o menos un 1cm

2. Llenar la copa con un tercio de material preparado dando un espesor de un 1cm.

3. Nivelar y alisar la superficie de la muestra.

4.Separar la muestra por el centro con el ranurador desde el interior hasta el borde libre de la capa.

5. Girar la manivela del aparato con una velocidad de caída de la copa de dos golpes por segundo contando el número de golpes requeridos para que los bordes de la ranura se toquen en una longitud de más o menos 1cm.

6. Tomar una muestra donde se haya cerrado la ranura y colocarla en un recipiente para determinar el contenido de humedad.

7. Pesar y secar en el horno por 24 horas.

Límite plástico

1. Tomar 10 gr del material que quedó en la copa.

2. Amase el material y formar un cilindro de 3mm de diámetro y colocar en una tara.

3. Pesar y secar en el horno por 24horas.

4. Repetir ese procedimiento al menos tres veces. El límite plástico es el promedio de los valores de humedad determinados siempre y cuando la diferencia entre cada uno de ellos no supere el 2%.

5. Determinar el Índice de Plasticidad (IP) como la diferencia entre el límite líquido y el límite plástico.

En este ensayo se trabaja con una profundidad constante de 10 cm, el número de golpes varía según el agua que se le aplica a la muestra y para cada uno se calcula el peso húmedo y seco de las porciones de suelo que le corresponden, el contenido de humedad (columna 9) viene dado por :

W % = --- * 100

Para el Limite Liquido (LL) se grafica numero de golpes vs contenido de humedad (W), de esta grafica se obtiene el contenido de humedad optimo que se alcanza cuando el numero de golpes es igual a 25 que viene a ser el limite liquido del suelo.

El Límite Plástico (LP) se obtiene con el promedio de los contenidos de humedad adquiridos en este ensayo. El índice de plasticidad se calcula con la siguiente fórmula: IP=LL-LP. (Ver Tabla 5)

	LIMITES DE CONSISTENCIA									
Parcela: Situación:						Fecha: Calicata	ı N⁰:			
Surco Nº:						21 Laboratorio:		Suelos	:-UC	
Profundida	N° de golpes del			Tara+ suelo	Tara+ suelo			Suelo seco	W Humedad	Resultado Final

 Tabla 5. Formato para límites de consistencia.

Fuente: Araujo, J.; Mata, F. (2009).

Permeabilidad

Según Lambe et al (2006), la permeabilidad es la propiedad del suelo que indica la facilidad relativa con la que el fluido puede atravesarlo.
Se afirma que un suelo es permeable si deja pasar a través de él una cantidad apreciable de fluido en un tiempo dado, e impermeable si la cantidad de fluido es despreciable. Mientras más permeable sea el suelo, mayor será la filtración y viceversa.

La velocidad con la que el fluido atraviesa el material depende de tres factores básicos:

- La porosidad del material;
- La densidad del fluido considerado, afectada por su temperatura;
- La presión a que está sometido el fluido.

Para ser permeable, el suelo debe ser poroso, es decir, debe contener espacios vacíos o poros que le permitan absorber fluido. A su vez, tales espacios deben estar interconectados para que el fluido disponga de caminos para pasar a través del material.

Muchos factores afectan a la permeabilidad del suelo. En ocasiones, se trata de factores en extremo localizados, como fisuras y cárcavas, y es difícil hallar valores representativos de la permeabilidad a partir de mediciones reales. Las observaciones sobre la textura del suelo, su estructura, consistencia, color y manchas de color, la disposición por capas, los poros visibles y la profundidad de las capas impermeables como la roca madre y la capa de arcilla, constituyen la base para decidir si es probable que las mediciones de la permeabilidad sean representativas.

La permeabilidad del suelo se relaciona con su textura y estructura, ya que el tamaño de los poros del suelo reviste gran importancia con respecto a la tasa de

filtración (movimiento del agua hacia dentro del suelo) y a la tasa de percolación (movimiento del agua a través del suelo). El tamaño y el número de los poros guardan estrecha relación con la textura y la estructura del suelo y también influyen en su permeabilidad.

La permeabilidad del suelo suele medirse en función de la velocidad del flujo de agua a través de éste durante un período determinado. Generalmente se expresa o bien como una tasa de permeabilidad en centímetros por hora (cm/h), milímetros por hora (mm/h), o centímetros por día (cm/d), o bien como un coeficiente de permeabilidad en metros por segundo (m/s) o en centímetros por segundo (cm/s).

El coeficiente de permeabilidad para todo tipo de suelo utilizando la prueba de carga variable, se deduce según la siguiente fórmula (según Lambe, 2006):

$$k = \frac{Q \times L}{t \times h \times A} \tag{1}$$

Donde:

Q: Caudal de agua que se filtra a través del suelo en un tiempo t (seg).

H: Pérdida de carga total (cm).

A: Área transversal de la muestra (cm^2) .

Para la prueba con caga variable el coeficiente de permeabilidad puede calculase a partir de la siguiente fórmula:

$$k = 2.303 \times \frac{a \times l}{A \times \P_1 - t_0} \times \log\left(\frac{h_1}{h_2}\right)$$
(2)

Donde:

a: Sección transversal de la bureta (cm^2) .

L: Longitud de muestra de suelo en el permeámetro (cm).

A: Sección transversal del permeámetro (cm²).

t₀: Instante en segundos en el que el nivel del agua en la bureta está en $h_{0.}$ t₁: Instante en segundos en el que el nivel del agua en la bureta está en $h_{1.}$ $h_{0.}$ h1: Alturas en centímetros entre las que se determina la permeabilidad.

Las ecuaciones (1) y (2) son deducidas mediante la Ley de Marcí, para los casos de flujos presentes en los permeámetros.

A continuación se muestra un esquema representativo de los coeficientes de permeabilidad según el tipo de suelo:

	Grava limpia	10 ⁻¹ -
Rápida	Arenas limpias	- ^{c-} 01
	Arena limpia y mezclas de grava	10-4 -
	Arenas muy finas	10-5 -
	Limos orgânicos e inorgânicos	10-6
Moderada	Mezclas de arena, limo y arcilla	10-7 -
	Depósitos estratificados de arcilla, etc.	-9
Lenta '	Suelos impermeables, por ejemplo, arcillas homogéneas por	10-10
	debajo de la zona de meteorización	10-11 -

Figura 1. Coeficiente de permeabilidad. Terzaghi y Peck (1967)

Para fines <u>agrícolas y de conservación</u>, las clases de permeabilidad del suelo se basan en las tasas de permeabilidad, y <u>para la ingeniería civil</u>, se basan en el coeficiente de permeabilidad.

Ensayo de Permeabilidad (ASTM D2434)

1. Tomar el molde cilíndrico con la muestra, conectarlo al permeámetro y asegurar con silicón para que no haya fuga de agua por los bordes del molde.

2. Saturar el suelo con agua proveniente del permeámetro.

3. Calibrar el tubo de 4.5mm del permeámetro y tomar las lecturas al inicio y al final.

Formato de recolección de datos en laboratorio:

En un estudio de laboratorio se recomienda usar el siguiente formato, el cual solicita los siguientes datos:

Datos de localización: localización del sitio de medición, fecha, designación del punto donde se hizo la prueba, profundidad a la que se tomo la muestra, coordenadas y número de la calicata.

Datos obtenidos del permeámetro: alturas y tiempo que tarda en bajar y pasar el agua por H1, Hm y H2, luego de saturada la muestra.

Tabla 6. Formato para Ensayo de Permeabilidad

ENSAYO DE PERMEABILIDAD	A CONTRACTOR
reo: 26	
Coordenada de la calicata:	
	reo: 26 Coordenada de la calicata:

Fuente: Araujo, J.; Mata, F. (2009).

Resistencia al corte

Según Lambe (2006), la resistencia al corte se define como la capacidad interna de una masa de suelo por área unitaria a resistir la falla y el deslazamiento a lo largo de cualquier plano dentro de ella.

También puede definirse como la capacidad que posee el suelo para resistir fuerzas que intentan causar que su estructura interna se contraiga contra sí misma.

Los factores que influyen en la resistencia al corte son:

- El mismo suelo.
- La granulometría de las partículas del suelo.

• Los ensayos de laboratorio utilizados para obtener los parámetros de resistencia al corte.

Los suelos no se comportan igual cuando se someten a un esfuerzo cortante. En los suelos arcillosos secos y arenosos compactados, la rotura suele ser frágil y, al alcanzar un nivel de esfuerzo, el suelo se rompe bruscamente requiriendo un esfuerzo mucho menor para continuar el avance. Es aquí cuando predominan las fuerzas de cohesión sobre el rozamiento interno de las partículas.

Los suelos arcillosos húmedos y los arenosos sueltos se deforman plásticamente alcanzando un máximo que se mantiene a partir de un grado de deformación. A este tipo de suelos se les denominan plásticos y en ellos predominan las fuerzas de rozamiento interno sobre la cohesión. Entre ambos se encuentran los suelos agrícolas medios, en los que las fuerzas de resistencia se deben a una combinación de cohesión y rozamiento interno.

Aun no existe una definición general del concepto de falla, debido a que ésta depende de dos parámetros:

- Principio del comportamiento inelástico.
- Rotura del material.

Los primeros estudios sobre la resistencia al corte de los suelos fueron efectuados por el ingeniero francés Coulomb (1736-1806), quien en una primera aproximación al problema, atribuyó éste fenómeno a la fricción producida entre las partículas de suelo como una extensión del concepto de la mecánica. Su teoría de falla establece que el material falla cuando el esfuerzo cortante actuante en un plano alcanza un valor límite máximo.

Figura 2. Esquema de la caja para la prueba de corte directo. B. K. Hough-Basic Soil Engineering (1957).

Generalizando, se tiene que, dada una masa de suelo y un plano potencial de falla *AA*, según Fig. 2 b, el esfuerzo de corte que puede resistir la masa de suelo por unidad de área es proporcional al valor de σ (presión normal en dicho plano). De éste modo se obtiene que:

$$\tau = \sigma . tg\varphi \qquad (3)$$

Donde:

 σ : Esfuerzo cortante (kgf/cm²).

φ: Ángulo de fricción interno en grados.

La constante de proporcionalidad $tg\phi$, fue definida por Coulomb en términos de un ángulo al que denominó *ángulo de fricción interna*.

Analizando la ecuación se deduce que para $\sigma = 0$ es $\tau = 0$. Pero Coulomb observó que existían materiales que sin presiones normales aplicadas sobre el plano de corte presentaban una cierta resistencia al cizallamiento. Para estos suelos consideró una nueva constante a la que denominó cohesión $\tau = c$. Como, en general, los suelos presentan un comportamiento mixto, Coulomb determinó que la resistencia de los suelos debía expresarse como la suma de ambos comportamientos: la resistencia debida a la fricción interna y la resistencia debida a la cohesión (c). Así estableció lo que hoy se denomina Ley de Coulomb:

$$\tau = c + \sigma . tg\varphi \qquad (4)$$

Posteriormente, Mohr (1900), presentó una teoría sobre la rotura de los materiales en la que afirma que un material falla debido a una combinación crítica de

esfuerzo normal y esfuerzo cortante. Su criterio establece que la falla por corte sucede a lo largo de la superficie donde la relación τ / σ alcance un cierto valor máximo. En la actualidad se emplea como criterio de falla el denominado de Mohr-Coulomb, con una envolvente de falla curva (Ver figura 3). Se considera que la falla se produce por la solicitación de corte y se acepta que ésta depende del esfuerzo normal actuante en el plano de falla.

Figura 3. Envolvente de falla. Curva de Resistencia intrínseca. Mohr-Coulomb. Braja Das (2001).

En el año 1936 Terzaghi, enunció el principio de presiones totales, neutras y efectivas, expresando que "todos los efectos tangibles provocados por un cambio de presión, tales como la compresión, distorsión angular, y cambios en la resistencia al corte, se deben exclusivamente a los cambios de las presiones efectivas". Sobre la base de este enunciado se estableció que en las ecuaciones de la ley de Coulomb debería sustituirse la presión normal total por la presión intergranular, denominada generalmente σ ', ya que ésta última es la que gobierna el comportamiento de la resistencia al corte de los suelos. De esta manera la ecuación se generalizó como:

$$\tau = c + (\sigma - u) t g \varphi \tag{5}$$

Donde:

c= resistencia debida a la cohesión.

 σ = Esfuerzo cortante.

 μ = Presión de poros.

 φ = Angulo de fricción interno.

El estado de tensión en un punto está definido cuando se conocen las solicitaciones en ese punto. (Ver figura 4)

Figura 4. Estado de tensión alrededor de un punto

Del equilibrio de un prisma elemental se obtiene:

$$\sigma_{\alpha} = \sigma_{y} \cos^{2} \alpha + \sigma_{z} sen^{2} \alpha + \tau_{yz} sen\alpha \cos\alpha \quad (6)$$

$$\sigma_{\alpha} = (\sigma_z - \sigma_y) sen\alpha \cos\alpha + \tau_{yz} (\cos^2 \alpha - sen^2 \alpha)$$
(7)

En la Teoría de la Elasticidad se demuestra que existen planos ortogonales entre sí, llamados planos principales de esfuerzos en los que los esfuerzos tangenciales son nulos, existiendo únicamente esfuerzos normales, denominados principales (σ_1 y σ_3).

A partir de estos esfuerzos principales σ_1 y σ_3 pueden obtenerse para una condición de equilibrio del prisma elemental:

$$\sigma_{\alpha} = \frac{1}{2}(\sigma_1 + \sigma_3) + \frac{1}{2}(\sigma_1 - \sigma_3)\cos 2\alpha \quad (8)$$

$$\tau_{\alpha} = \frac{1}{2}(\sigma_1 - \sigma_3)sen2\alpha \tag{9}$$

Donde; σ_{α} y τ_{α} son respectivamente las tensiones normales y tangenciales en el plano *a-a* que forma un ángulo α con la vertical (Ver figura 5). Estas expresiones representan la ecuación de una circunferencia.

Figura 5. Estados de tensión máxima alrededor de un punto

Si se considera un elemento de suelo sometido a las presiones normales principales σ_1 y σ_3 siendo la presión vertical mayor que la horizontal, es decir, $\sigma_1 > \sigma_3$, se tiene un sistema plano de tensiones, donde los pares de tensiones σ y τ que se ejercen sobre planos intermedios a los principales quedan representados en el círculo de Mohr. (Ver figura 6)

Figura 6. Esfuerzos en el plano de falla del suelo

Uno de los puntos del círculo de Mohr tendrá una combinación de tensiones σ y τ que producirá la rotura en un plano de inclinación α respecto al plano en que se ejerce la tensión principal mayor, en este caso σ_1 . Este es el punto D donde el círculo de Mohr resulta tangente a la línea de resistencia al corte $\tau = c + \sigma$. tg ϕ llamada línea de resistencia intrínseca.

Asociado a la condición de rotura, geométricamente se obtiene que:

$$2\alpha = 90^{\circ} + \varphi \tag{10}$$

Por lo tanto el ángulo correspondiente al plano de rotura será:

$$\alpha_{ROT} = 45^{\circ} + \varphi/2 \qquad (11)$$

Es decir que el plano de rotura forma un ángulo de $45^{\circ}+\frac{1}{2}\varphi$ con la dirección de la tensión principal menor.

T. William Lambe (1987), manifiesta que no es sencillo obtener medidas exactas de la resistencia al corte. En particular debe adoptarse un gran cuidado en la extracción de las muestras y en la preparación de las mismas para la prueba. Para obtener valores precisos, deben reproducirse en las pruebas todos los aspectos de las condiciones in situ.

Corte directo sin drenaje (ASTM D3080-04)

1. Cortar una muestra de suelo de tal manera que se ajuste en lo posible al tamaño de la caja de corte.

2. Calcular el área de la muestra con las dimensiones de la caja de corte.

3. Ensamble las dos partes de la caja de corte y ajuste la separación entre ellos con los tornillos respectivos. La separación entre dichas partes debe ser ligeramente mayor que el tamaño de la máxima partícula de la muestra

4. Colocar la muestra de suelo dentro de la caja de corte, entre las dos piedras porosas.

5. Colocar el pistón de carga y aplicar la carga vertical (PV). Coloque y ajuste los extensómetros.

6. Aplicar gradualmente la carga horizontal (PH) y tomar las lecturas del extensómetro en el anillo de carga y el extensómetro horizontal.

7. La prueba termina cuando el suelo falla lo cual ocurre cuando la lectura del extensómetro del anillo de carga se estabiliza o disminuye.

8. Repetir el ensayo para tres valores de carga vertical para obtener la línea de falla.

 Tabla 7. Formato para Ensayo de Permeabilidad

	RESISTENC	IA AL ESFUERZ PARTE I	O CORTANTE.	PACLA TAC DE WICETMENNA
Parcela:			Fecha:	
Situación:	Zona de valle con pe	ndiente longitudinal 1%.	Cuenca del río Chirgua-	Estado Carabob
Calicata Nº:	1	Coordenada de la Calica	ta:	
Carga Vertical: (5+4,5)	Kg	Esfuerzo Vertical: 0,2	6 Kg/cm2	
Deformación	Ī	Fuerza de Corte	Esfuerzo Cortante	
Horizontal(mm)	Dial de Carga (Div)	Horizontal (Kg)	(Kg/ cm2)	
Carga Vertical: (10+4,5)Kg	Esfuerzo Vertical: 0,4	0 Kg/cm2	
Deformación		Fuerza de Corte	Esfuerzo Cortante	
Horizontal(mm)	Dial de Carga (Div)	Horizontal (Kg)	(Kg/ cm2)	
Carga Vertical: (15+4,5	i)Kg	Esfuerzo Vertical: 0,54		
Deformación		Fuerza de Corte	Esfuerzo Cortante	
Horizontal(mm)	Dial de Carga (Div)	Horizontal (Kg)	(Kg/ cm2)	

Fuente: Araujo, J.; Mata, F. (2009).

Conceptos de sistemas de información geográfica (GIS)

Reseña Histórica

Durante los años 70 comenzó la aplicación de los Sistemas de Información Geográfica (GIS) a problemas específicos como el planeamiento e impacto ambiental, pero fue a principio de los años 80 con la aparición de ordenadores con terminales gráficos cuando se afianzó en la industria especialmente con la aparición del ArcInfo como producto comercial en 1982. En el paso de la década de los 80 a los 90 con la popularización de las estaciones de trabajo UNIX, ésta proporcionó por primera vez una plataforma adecuada para desplegar todas las potencias de los GIS, aunque con unas barreras de precio que lo han restringido a unas aplicaciones técnicas profesionales.

Arcgis

El Arcgis incluye una familia de aplicaciones integradas: ArcMap, ArcCatalog y ArcToolbox e interfases de geoprocesadores. Al usar éstas aplicaciones juntas se pueden ejecutar cualquier tarea de GIS, de simples a avanzadas, incluyendo el mapeo, administración de datos, análisis geográficos, edición de datos y el geoprocesamiento.

ArcMap

El ArcMap provee herramientas para la creación de despliegues visuales de sus datos, consultas y creación de mapas de presentación de alta calidad. Es una aplicación primaria de Arcgis para el despliegue, consulta, edición, creación y análisis de datos.

ArcCatalog

El ArcCatalog ayuda a organizar y manejar todos los datos GIS, incluye herramientas para explorar y encontrar información geográfica, para la grabación y visualización de metadatos, para la visualización rápida de cualquier conjunto de datos y para la definición de estructuras y esquemas para sus capas de datos geográficos.

ArcToolbox

Ésta ventana provee herramientas para la conversión de datos, el manejo de sistemas de coordenadas, el cambio de proyecciones de mapas entre otras.

Funciones de un GIS

Un GIS debe ser capaz de las siguientes operaciones fundamentales a fin de ser útil en encontrar soluciones a los problemas del mundo real.

• Captura de datos: un GIS debe proveer métodos para la entrada de datos geográficos (coordenadas) y datos tabulares (atributos). Entre más métodos de entrada hayan más versátil es el GIS.

• Almacenaje de datos: hay dos modelos de datos para el almacenaje de datos geográficos que son vector y raster. Un GIS debería ser capaz de guardar datos en ambos modelos.

• Consulta de datos: un GIS debe ser capaz de responder las preguntas concernientes a la interacción de las relaciones espaciales entre múltiples conjunto de datos.

• Despliegue de Datos: un GIS debe tener herramientas para la visualización de elementos geográficos usando una variedad de símbolos.

• **Resultados:** un GIS debe ser capaz de desplegar resultados en una variedad de formatos, tales como mapas, reportes y gráficos.

Características de un sistema de información geográfica (GIS)

Un Sistema de Información Geográfica (GIS) es un sistema de hardware, software, información espacial y procedimientos computarizados, que permite y facilita el análisis gestión o representación del espacio.

El Sistema de Información Geográfica separa la información en diferentes capas temáticas y las almacena independientemente o como parte de un documento guardado (archivo .mxd), permitiendo trabajar con ellas de manera rápida y sencilla, y permitiendo al profesional la posibilidad de relacionar la información existente a través de la topología de los objetos, con el fin de generar otra nueva que no podríamos obtener de otra forma. Las capas no almacenan los datos reales geográficos sino que referencia los datos contenidos en la fuente de datos. Las fuentes de datos pueden ser cualquiera de las siguientes:

• Conjunto de Datos (datasets) o capas de elementos: coberturas, archivos shape, archivos CAD, geobase de datos y bases de datos SDE.

- Anotaciones y dimensiones
- Conjuntos de datos raster (capas raster): Grids e imágenes

• Conjuntos de datos TIN: redes irregulares trianguladas; éstas modelan datos tridimensionales.

Mapas y objetos de diseño

Un mapa transmite información geográfica, resalta relaciones geográficas importantes y presenta resultados de análisis.

Los objetivos de un mapa son:

- Compartir información.
- Enfatizar relaciones.
- Ilustrar el resultado de un análisis.

• Soporte de decisiones.

Entre los objetivos del diseño se tienen:

- Manipular las características gráficas y tablas
- Cumplir con los objetivos propuestos

Metodología de sistemas de información geográfica (GIS)

El procedimiento utilizado para la representación geográfica de las propiedades físicas de los suelos (Granulometría, Permeabilidad y Resistencia al Corte y Compresibilidad) se llevó a cabo mediante las siguientes etapas:

1. Determinación de las Necesidades. Para obtener la información necesaria para completar esta tarea se realizaron entrevistas a usuarios potenciales que aportaron estrategias y mecanismos para la utilización y manejo de ArcGis.

 Diseño Conceptual y Lógico. Esta fase incluye la determinación del contenido de la base de datos (espacial, atributos y comportamiento), seleccionando y organizando lógicamente el conjunto de datos geográficos apropiados.

3. Diseño Físico. Se estructuraron físicamente los datos que conformarían la estructura de la base de datos. En esta fase también se implementó un esquema detallado de la base de datos.

4. Plan de Automatización. Una vez finalizado el diseño de la base de datos, se incorporaron los datos de la siguiente manera:

a. Se transformaron los datos en el formato deseado.

b. Se corrigieron los errores espaciales y se añadieron los datos atributivos apropiados.

c. Se agregaron piezas individuales de los datos a la representación completa de su área de estudio.

5. Proyecto Piloto. Esta fase consistió en comprobar la funcionalidad, desempeño y flexibilidad del diseño de la base de datos antes de la implementación a gran escala, lo que permitió realizar una evaluación del diseño a un costo relativamente bajo. Para lograr este objetivo, se usaron varios conjuntos de datos para asegurar que el diseño trabaja y se requirieron más de un estudio piloto.

6. Implementación Final. En esta etapa los datos Gis se representaron espacialmente, se caracterizaron (atributos) y se establecieron las reglas de su comportamiento (instrucciones que gobiernan los elementos del mapa). El objetivo principal de esta fase fue representar un producto que comunicara efectiva, eficiente y claramente las propiedades físicas de los suelos mencionadas anteriormente.

Procedimiento para proyecto de representación de las características físicas de suelo en ArcGis

Creación de la geobase de datos para el proyecto

¿Dónde guardar el proyecto?

Todos los archivos del proyecto serán almacenados en una geodatabase o geobase de datos, este término se usa para referirse a un formato de almacenamiento en ArcGIS. La creación de la geobase de datos para el proyecto presenta las siguientes ventajas: (1) almacenamiento centralizado de formato de datos espaciales y atributos, (2) reglas de comportamiento estándar de fácil uso, (3) opciones múltiples de personalización, edición multiusuario.

Creación de la carpeta de la geobase de datos

• Abrir ArcCatalog.

• En la ventana Catalog, hacer un clic en el botón derecho del Mouse y seleccionar *New →File Geodatabase*.

• Hacer clic con el botón derecho del Mouse y seleccionar *Rename*, y colocar "ProyectoPotrerito".

Tipo de formato de almacenamiento de datos a utilizar dentro de la geobase

El proyecto Potrerito incluirá los siguientes conjuntos de clases de elementos (feature dataset):

• Usos de la Tierra: almacenará los siguientes feature class o clases de elementos: límites de sector (polígonos), límites de parcelas (polígonos).

• **Propiedades Físicas de Suelo**: almacenará granulometría, resistencia al corte, contenido de humedad, permeabilidad, por punto.

• También incluirá la imagen raster (.tiff), la cual se denominará como la zona de estudio Potrerito.

Los datos mencionados arriba serán almacenados en **coberturas** dentro de la geobase de datos. Las coberturas (feature dataset) presentan las siguientes ventajas; (1) contienen uno o más clases de elementos; líneas, polígonos y puntos, (2) permiten hacer validación espacial; topología y red geométrica y validación atributiva; subtipos, dominios y relaciones de clases.

41

Creación de las clases de elementos para el uso de la tierra

Creación de los feature dataset (conjuntos de clases de elementos) o coberturas dentro de la geobase de datos

En este punto se ilustrará la creación del archivo que contendrá los elementos para el uso de la tierra.

• En ArcCatalog, hacer clic con el botón derecho sobre el símbolo de geobase de datos **ProyectoPotrerito.gdb** y seleccionar New→Feature Dataset.., y se activará el asistente para configuración de las propiedades del Feature Dataset.

• En el campo Name, digitar Usos_de_la_Tierra.

• Escoger el Sistema de Coordenadas XY que será utilizado en los datos. Hacer clic en el símbolo más (+) para extender el menú de opciones de la carpeta **Projected Coordinate System**. Hacer clic en el símbolo (+) para extender el menú de opciones de la carpeta **UTM**. Hacer clic en el símbolo (+) para extender el menú de opciones de la carpeta **Other GCS** y seleccionar **REGVEN UTM Zone 19**. Esta selección se visualiza en el campo Name ubicado en el tope del listado. Hacer clic en *Siguiente*.

• Hacer clic en Siguiente para la selección del Sistema de Coordenadas a ser utilizado para las coordenadas Z de los datos. Hacer clic en Siguiente.

• Aceptar los valores por defecto para la tolerancia XY entre coordenadas. Verificar que esté marcada la opción *Accept default resolution in domain extent* y seleccionar *Finish* para terminar.

• Creación de las clases de elementos (Feature Class) dentro del archivo usos de la tierra

En este punto se ilustrará la creación del archivo que contendrá los límites de parcelas, el cual se denominará **Parcelas**:

• En ArcCatalog, expandir ProyectoPotrerito.gdb→Usos_de_la_Tierra.

 Hacer clic con el botón derecho sobre Usos_de_la_Tierra, y seleccionar New→New Feature Class.

• En el Cuadro de Dialogo para la Nueva Clase de Elementos, digitar *Parcelas* en Name.

• En Alias, digite *Parcelas*.

• En el **Type**, seleccionar *Polygon Feature*. Hacer clic en *Siguiente*.

• Aceptar la configuración de almacenamiento de la base de datos. Hacer clic en *Siguiente*.

• Aceptar los campos configurados por defecto. Hacer clic en *Finish*.

• Expandir la cobertura Usos_de_la_Tierra y previsualizar la nueva clase de elementos *Parcelas*.

• Previsualizar los campos de la clase de elementos Parcelas. Hacer clic en Preview→Table.

• Cerrar ArcCatalog.

Transformación de las entidades del mundo real a vectores

Se utilizará una imagen raster georeferenciada, a partir de la cual se obtendrán los vectores requeridos en cada Feature Class o clase de elementos; polígonos, líneas y puntos. En este punto se ilustrará la creación de los límites de parcelas.

Creación de la capa de límites de parcelas dentro de la cobertura usos de la tierra

Edición del feature class: Parcelas

• Abrir ArcMap. Hacer un clic sobre el botón Adicionar Datos (Add Data).

• Utilizar el navegador para buscar el elemento Parcelas. (C:Potrerito\ProyectoPotrerito.gdb\Usos_de_la_Tierra\Parcelas) y hacer un clic sobre Adicionar (Add).

• Utilizar el navegador para buscar el archivo raster. (C:Potrerito\ProyectoPotrerito.gdb\Potrerito) y hacer un clic sobre Adicionar (Add).

• La imagen raster y la capa vacía denominada Parcelas aparecerán en la Tabla de Contenidos.

• En caso de ser necesario, hacer un clic y arrastrar la imagen "Potrerito" al fondo de la Tabla de Contenidos de tal forma que las líneas que adicione se puedan visualizar sobre la imagen.

Ahora cambiar el símbolo asignado por el programa a la capa
 Parcelas por uno que sea visible mientras digitaliza los límites de la parcela.

• Hacer un clic sobre el símbolo de la capa Parcelas en la Tabla de Contenidos.

• En Options, hacer un clic sobre el botón Fill Color y seleccionar No Color.

• En Options, ajustar el ancho de la línea (Outline Width) a 2 puntos.

• En Options, hacer un clic sobre el color de salida (Outline Color) y seleccionar Solar Yellow.

• Observar la configuración en Preview.

• Hacer clic en el botón OK y cerrar el cuadro de selección de símbolos (Symbol Selector).

Iniciar una sesión de edición

• Hacer clic en View > Toolbars > Editor.

• Hacer clic en la barra del Editor, e iniciar una sesión de edición, presionando *Start Editing*.

• Colocar en el recuadro Task: Create New Feature.

• Colocar en el recuadro Target: Parcelas.

• En la Tabla de Contenidos, seleccionar la pestaña Selection y activar Parcelas.

• En Editor > Snapping, para la capa parcelas; seleccionar Vertex y End.

• Cerrar el cuadro de Snapping.

• Seleccionar la herramienta *Sketch Tool (lápiz)*, de la barra del editor e iniciar la vectorización o trazado de las parcelas.

• Una vez completada la primera parcela, cambiar las condiciones de edición para garantizar coincidencia de los elementos que se construirán posteriormente. Para ello, colocar en el recuadro *Task: Auto complete polygon* y asegurar que *Target: Parcelas*.

• Completar la digitalización de las parcelas.

Transformación de coordenadas geográficas a coordenadas XY UTM.

Existen algoritmos ya programados con las ecuaciones de proyección. Entre los software que se encuentran disponibles, como ejemplo se utilizará UTMv.2007.12. A continuación se describen los pasos para el uso del programa:

• Crear un fichero de puntos de entrada en formato .txt. En el fichero de entrada los datos deben digitarse separados por espacios o punto y coma. Cuando se trata de SCG en grados, minutos y segundos; el orden es el siguiente:

<N°Punto> <+-long_grado> <long_min> <long_seg> <+/- lat_grado> <lat_min> <lat_seg> <+/- para E/W y +/- para N/S) y añadir el valor <N° Huso> de esta manera se garantiza el cálculo con el huso introducido. (Ver Figura 7)

PUNTOS finales - Notepad	×	-
File Edit Format View Help		
01 -68 11 37.0 +10 13 54.0 19 02 -68 11 20.0 +10 13 54.0 19 03 -68 11 14.0 +10 13 55.0 19 04 -68 11 20.0 +10 13 49.0 19 05 -68 11 30.0 +10 13 51.0 19 06 -68 11 26.0 +10 13 51.0 19 07 -68 11 26.0 +10 13 48.0 19 08 -68 11 20.0 +10 13 44.0 19 09 -68 11 06.0 +10 13 44.0 19		M M
10 -68 11 13.0 +10 13 41.0 19 11 -68 11 33.0 +10 13 43.5 19 12 -68 11 25.0 +10 13 45.0 19 13 -68 11 22.0 +10 13 32.0 19 14 -68 11 29.0 +10 13 39.0 19 15 -68 11 22.0 +10 13 38.0 19 16 -68 11 07.0 +10 13 36.5 19 17 -68 11 14.0 +10 13 38.2 19	•	-

Figura 7. Puntos De Entrada en Formato TXT. Fuente: Araujo, J.; Mata, F. (2009).

• En el menú Sistemas de Referencia de la ventana de cálculo del programa, elegir el elipsoide de referencia para los cálculos. Para este caso se seleccionará WGS84.

• En el menú Configurar de la ventana de cálculo del programa, hacer clic en Formato de salida de ficheros. En el cuadro Separador de Valores, activar la opción Ancho fijo con espacios. En el cuadro Incluir, activar Cabecera y factor de escala. En el cuadro Decimales, dejar la configuración por defecto.

• En el menú Archivo, hacer clic en la opción Transformar entre UTM/Geo/XYZ.

• En la ventana emergente Transformar Ficheros; en el Cuadro Coordenadas de Entrada, activar Geográficas y en Coordenadas de Salida activar UTM. Hacer clic en Continuar.

• En la ventana Geo a UTM, aceptar la configuración preestablecida relacionada con el elipsoide de referencia y los decimales de salida

• En la ventana Geo a UTM: Seleccionar fichero de coordenadas Geo en WGS84, navegar hasta la carpeta donde se encuentra el archivo Puntos.txt, C: Potrerito\Puntos.txt. Seleccionar Abrir.

• En la ventana Geo a UTM: Guardar fichero de coordenadas UTM en WGS84, digite un nombre para el fichero de salida, por ejemplo PuntosWGS84.txt, y presionar el botón Guardar, se observa El fichero de salida. (Ver Figura 8)

47

🔲 puntos	_potrerito_UTM - Note	epad			×
File Edit	: Format View He	elp			
Nº	Xutm(m.)	Yutm(m.)	Nº Huso	Norte(1)/Sur(-1)	
01 02 03 04 05 06 07 08 09 10 11 12	588656.7308 588830.0640 589149.5648 588758.4810 588931.9096 589254.5746 589017.8956 588968.8136 588604.2236 588659.8204 588659.8204 588977.0009 588669 4332	1131159.3066 1131193.5293 1131175.9048 1130622.0390 1130619.4034 1130555.7140 1130303.2490 1130462.8467 1130259.2080 1129927.6190 1129627.4027 1129734.1349	19 19 19 19 19 19 19 19 19 19 19	+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	E
13	588806.2707	1129765.1938	19	+1	-
					. ▶

Figura 8. Coordenadas De Puntos UTM en WGS84.TXT. Fuente: Araujo, J.; Mata, F. (2009).

Conversión del archivo de texto (.txt) a un archivo de DBase (.dbf)

Conversión de .txt a .xls

• Abrir Microsoft Excel, seleccionar el menú Datos→Obtener datos externos→Importar datos.

• En la ventana, Seleccionar archivo de origen de datos. Hacer clic en Tipos de datos y del menú desplegable elegir Archivos de Texto (*.txt, *.prn..). Para Nombre de archivo, hacer doble clic en el archivo PuntosWGCS84.txt. Hacer clic en Abrir.

• En el Asistente para importar texto emergente. En el paso 1, verificar que esté activa la opción De ancho fijo. Aceptar la opción comenzar a importar en la fila 1. Hacer clic en Siguiente.

• En el paso 2, la pantalla muestra la separación de campos, observar las divisiones y hacer clic en Siguiente.

• En el paso 3, la pantalla muestra la opción para establecer el formato de datos. Hacer clic en Avanzadas→Separador decimal, seleccionar el punto. En Separador de miles, seleccionar la coma. La opción signo menos detrás de los números negativos debe estar activa, Aceptar. En el cuadro del paso 3, verificar que esté activa la opción General, hacer clic en Finalizar.

• En la ventana Importar datos, a la pregunta de dónde desea ubicar los datos, verificar que esté seleccionada la opción en Hoja de cálculo existente. Hacer clic en Aceptar. se observara una ventana, donde se listan en columnas; número de punto, coordenada x, coordenada Y, factor de escala, número de huso y signo según sea Norte o Sur.

G		- 9 - (-)	⇒		-	1.xlsx - Mic	rosoft Excel			
	7	Inicio Inser	tar Diseño (de página	Fórmulas Da	atos Revisa	r Vista			
Port	egar apape	Arial		• A A • A · ·	E = = = = i = = = i i = = = i Alineación	 General \$ → % \$ 0 → % Número 	V Estile	nato condiciona formato como ta os de celda ≁ Estilos	l ▼ In ibla ▼ In III Fo Ce	sertar * minar * ormato * eldas
0	Adve	rtencia de segur	idad Sehande	shabilitado l	as conexiones de d	atos Opcio	nes			
		F7	- (0	f_{x}						
	Α	В	С	D	E	F	G	Н		
1	N	Xutm(m.)	Yutm(m.)	N Huso	Norte(1)/Sur(-1)					
2										
3	1	588656.7308	1131159.307	19	1					
4	2	588830.064	1131193.529	19	1					
5	3	589149.5648	1131175.905	19	1					
6	4	588758.481	1130622.039	19	1					
(5	588931.9096	1130619.403	19	1					
8	6	589254.5746	1130555.714	19	1					
9	/	589017.8956	1130303.249	19	1					
10	0	500900.0130	1130462.847	19	1					_
12	10	500004.2230	1100209.200	19	1					
12	11	500059.0204	1129927.019	19	1					
14	12	588669 4332	1129027.403	19	1					-
15	13	588806 2707	1129765 194	19	1					
16	14	588700 3901	1129522 275	19	1					
17	15	588/35 /6//	1129610 687	19	1					-
14 4	→ H	coordenada	as_potrerito 🖉	_puntos_m	uestreo 🏑 yvyv 🖌	2				
Listo)									

Figura 9. Conversión De Archivos .TXT a .XLS. Fuente: Araujo, J.; Mata, F. (2009).

Conversión de .xls a .dbf

•

Seleccionar las columnas; punto, coordenada X y coordenada Y, sin incluir encabezado. (Ver Figura 10)

C		. 9 ~ (° ~)	÷			1.xlsx - Mic	rosoft Excel						
r ^c		Inicio Inser	tar Diseño (de página	Fórmulas Da	tos Revisa	r Vista						
Pegar Portapapeles G Fuente				• A A •	E = = = = = = = = = = = = = = = = = = =	General \$ ~ % *00 ~ % Número	 Forma Dar fo Estilo 	ato condicional ∽ ormato como tabla ∽ Is de celda ∽ Estilos Celda:					
9	Advertencia de seguridad Se han deshabilitado las conexiones de datos Opciones												
		A1	- (0	<i>f</i> ∗ N									
	Α	В	С	D	E	F	G	Н	1	J			
1	N	Xutm(m.)	Yutm(m.)	N Huso	Norte(1)/Sur(-1)								
2		588656 7308	1131159 307	19	1								
4	2	588830.064	1131193.529	19	1								
5	3	589149.5648	1131175.905	19	1								
6	4	588758.481	1130622.039	19	1								
7	- 5	588931.9096	1130619.403	19	1								
8	6	589254.5746	1130555.714	19	1								
9	7	589017.8956	1130303.249	19	1								
10	ŏ	588968.8136	1130462.847	19	1								
12	10	588659 8204	1129927 619	19	1								
13	11	588977.0009	1129627.403	19	1								
14	12	588669.4332	1129734.135	19	1								
15	13	588806.2707	1129765.194	19	1								
16	14	588700.3901	1129522.275	19	1								
17	15	588/35 /6//	1129610 687	puntos m	uestreo / vvvv	*]		14					
List	0			,	Prome	dio: 573046.203	3 Recuento: 5	1 Suma: 2578	7079.15				

Figura 10. Selección de Coordenadas a Transformar. Fuente: Araujo, J.; Mata, F. (2009).

• En Excel, en el menú Archivo→Guardar como→Guardar en.., navegar hasta C:\Potrerito. En Nombre de archivo, digite Puntos Muestreo. En Guardar como tipo, seleccionar la opción del menú desplegable; DBF 4 (dBASE IV) (*.dbf).

• Aceptar la opción en la ventana emergente que indica guardar sólo la hoja activa.

• Hacer clic en Si, para conservar el formato y eliminar las características no compatibles.

• Verificar que el archivo Puntos_muestreo.dbf ha sido añadido en la ubicación seleccionada.

Ahora se puede crear una capa de puntos XY en ArcGIS.

Creación de la clase de elementos (feature class) de puntos en ArcCatalog

Conversión del archivo .dbf a .shp

• Abrir ArcCatalog, y en el catalogo buscar C: \Potrerito\PuntosWGS84.

• Ubicar el curso sobre el archivo y previsualizar la tabla. N1 representa la coordenada X y N2 representa la coordenada Y. (Ver figura 11)

\land ArcCatalog - ArcInfo - C:\FLaColonia\P	UNTOSWGS84	.dbf		_	ðX
<u>File Edit View Go Tools Window H</u> elp					
🖕 😂 🍘 🛍 🛍 🗙 🔩 🕮 🏢 8	8 🙉 🧟 🎙	🕨 🔄 💦 Location	n: C:\\LeColonie	PUNTOSWGS84.dbf	
Stylesheet: FGDC ESRI 🗾 🚽	7 G ta a				
	Contents Pre	view Metadata			
	OID	N1	N2		
isemcourse	0	589838	1127206		
⊡ logs	-1	589914	1127323		
H MAILAB6p5	-2	590084	1127287		
Potrerito	3	589718	1127593		
🕀 🧰 Ortho	_4	589889	1127587		
i i i i i i i i i i i i i i i i i i i	- 5	589992	1127710		
	- 6	589204	1127638		
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	7	589360	1127518		
PUNTOSWGS84	8	589478	1127678		
puntosWGS84	9	589692	1127310		
PUNIOSWGS84	10	589458	1127214		
	11	589208	1127152		
□ □ □ □ □ □ □	12	589527	1127439		
PUTM	- 13	589019	1127272		
E PXY	- 14	589372	1127371		
	15	589226	1127315		~
XYubicacion	16	589135	1127425	All Selected Records (of 65535)	-
XYZ	1		· ·		Ĺ
	Preview:	Table	-		

Figura 11. Previsualización de Coordenadas N1 y N2. Fuente: Araujo, J.; Mata, F. (2009).

Creación del archivo del feature class de puntos a la geobase de datos proyecto Potrerito.

 Situar el cursor sobre el archivo y hacer clic en el botón derecho, en el menú desplegable seleccionar; Create feature Class→ From XY Table.

• En la ventana de dialogo, Create Feature Class from XY Table. Para el campo X, seleccione N1 y para el campo Y, seleccione N2. (Ver figura 12)

Create Feature Class From XY Table 🛛 👔 🔀
Input Fields
X Field:
N1 -
Y Field:
N2
Z Field:
<none></none>
Coordinate System of Input Coordinates
Output
Specify output shapefile or feature class:
C:\LaColonia\ProyectoLaColonia.gcb\PJNTOSW
Configuration keyword:
DEFAULTS
Advanced Geometry Options
OK Cancel

Figure 12. Create Feature Class from XY Table. Fuente: Araujo, J; Mata, F. (2009).

• En el boton Coordinate System of Input oordinates→Select→Projected Coordinate System→UTM→Wgs1984→WGS 194 UTM Zone 19.prj. (Ver figura 13)

Browse for C	oordinate System		X
Look in: 📋	Wgs 1984	- <u>-</u> <u>-</u>	
WGS 1984 U	ITM Zone 18N.prj	WGS 1984 UTM Zone 21S.prj	@wgs:
🕲 WGS 1984 U	TM Zone 18S.prj	🛞 WGS 1984 UTM Zone 22N.prj	@wgs:
WGS 1984 U	ITM Zone 19N.prj	🕲 WGS 1984 UTM Zone 22S.prj	@wgs :
@WGS 1984 U	TM Zone 19S.prj	🛞 WGS 1984 UTM Zone 23N.prj	@wgs :
@WGS 1984 U	TM Zone 1N.prj	🛞 WGS 1984 UTM Zone 23S.prj	@wgs :
@WGS 1984 U	TM Zone 1S.prj	🛞 WGS 1984 UTM Zone 24N.prj	@wgs:
@WGS 1984 U	TM Zone 20N.prj	🛞 WGS 1984 UTM Zone 24S.prj	@wgs:
WGS 1984 U	TM Zone 20S.prj	🛞 WGS 1984 UTM Zone 25N.prj	@wgs :
@WGS 1984 U	TM Zone 21N.prj	🕲 WGS 1984 UTM Zone 25S.prj	@wgs:
<			>
Name:	WGS 1984 UTM Zon	e 19N.prj	Add
Show of type:	Coordinate Systems	•	Cancel

Figura 13. Selección del Sistema de Coordenadas. Fuente: Araujo, J; Mata, F. (2009).

• En Output guardar el archivo en la geobase de datos: C:\Potrerito\ProyectoPotrerito.gdb\PUNTOSWGS84.

• Aceptar la configuración por defecto y OK.

Previsualizar. Hacer clic en Metadatos→Spatial y verificar que el nombre del Sistema de Coordenadas Proyectadas sea: WGS_1984_UTM_Zone_19N. (Ver figura 14)

Figura 14. PUNTOSWGS84 Con el Sistema de Coordenadas. Fuente: Araujo, J; Mata, F. (2009).

Importación del feature class de puntos al archivo de cobertura usos_de_tierra

• Hacer clic derecho en el archivo de cobertura Usos_de_Tierra y seleccionar Import→Feature Class Single.

• En la ventana de diálogo Feature Class to Feature Class. En Input Feature navegar a C:\Potrerito\ProyectoPotrerito.gdb\PUNTOSWGS84.

- En Output Location; C:\Potrerito\ProyectoPotrerito.gdb\Usos_de_Tierra.
- En Output Feature Class, digite P_Muestreo.
- Hacer click en OK.

• Previsualizar el elemento. En Metadatos \rightarrow Spatial, observar que automáticamente el Sistema de Coordenadas de la Proyección ha cambiado al del archivo cobertura para garantizar alineamiento de los elementos. **REGVEN UTM Zone 19.**

Visualización de la clase de elementos de puntos de muestreo en ArcMap.

• Abrir ArcMap y añadir C:\Potrerito\ProyectoPotrerito.gdb y C: \Potrerito\Regven_1 (imagen raster).

• Si no visualiza la imagen raster, hacer clic en botón derecho del Mouse sobre la imagen y seleccionar Zoom to Layer.

• Modificar la simbología de los puntos de muestreo, hacer clic sobre el símbolo y en la ventana Symbol Selector→Options, para color seleccionar Seville Orange y para tamaño (size) colocar 14 puntos. La imagen debe lucir como se indica. (Ver figura 15)

Creación de la simbología para representar las características físicas de suelos, relacionada a la capa de puntos de muestreo creada con Arcgis

Para visualizar los resultados de la caracterización de propiedades físicas se emplearán dos métodos, uno mediante el cual se realizará simbología de las propiedades físicas de suelo, mediante polígonos y otros mediante puntos.

Procedimiento I: Creación de simbología de características físicas de suelo mediante polígonos

1. Creación de archivo de resultados en MS Excel que contenga la coordenada de los puntos y los valores de las propiedades físicas asociadas a cada punto.

2. Conversión del archivo de MS Excel a DBASE.

3. Exportación de la tabla DBASE a la geobase de datos.

4. Creación de la clase de elementos (Feature Class) de puntos dentro de la geobase de datos.

5. Importación de la clase de elementos de puntos hacia el archivo de cobertura ubicado dentro de la geobase de datos.

6. Creación de un campo común en el archivo parcelas y el archivo de puntos dentro de la cobertura.

7. Unión de tablas de los atributos de la clase de elementos puntos y la clase de elementos parcelas.

8. Visualización mediante simbología de las propiedades físicas.

Creación de archivo de resultados en MS Excel que contenga las coordenadas de los puntos y los valores de las propiedades físicas asociadas a cada punto.

Crear una tabla de Excel que incluya columnas para las coordenadas proyectadas en el Sistema de Referencia Geográfica elegido para el proyecto. El Sistema de coordenadas proyectadas elegido para el Proyecto Potrerito es REGVEN_UTM_Zone_19, como se especificó en el paso II, que adicionalmente incluya los datos de las propiedades físicas de suelo. La Tabla con una lista parcial de los resultados creada para el Proyecto Potrerito. (Ver figura 16)

Figura 16. Tabla de resultados proyecto Potrerito. Fuente: Araujo, J; Mata, F. (2009).

Conversión del archivo de MS excel a DBASE

• Seleccionar las columnas; punto, coordenada X y coordenada Y, y resultado, puede incluir encabezado. (Ver Figura 17)

	- 19 - (₩ +) -			F	tesultados	[Modo	de com	patibi	lidad	- Micros	oft Excel				
	Inicio	Insertar	Diseño	de página	Fórmulas	Datos	Revis	ar \	ista							
ĥ	Å	rial Narro	w - 6	• A *	= = ;	₩~-	-	Genera			- 4	Formato c	ondiciona	I* B*	■Insertar ×	Σ -
Pegar	7			🇞 - 🗛 -			• a• •	E	% 00	0	**	Ectilor da	to como t	abla * 🖃	Eliminar *	0
Portapape	les 🖗		Fuente	G.	Ali	ineación	G.	N	úmero		6	Est	tilos		Celdas	~ y
	R5	•	(•	f_{x}												
A	В	С	D	E	F	G	н	1	J	K	L	M	N	0	Р	Q
1 Pento	×	Y	Profundidad	Conteniedo_ humedad	2Arena	2Limo	2Arcill	• LL	LP	IP	Gravedad_ Específica	Cohesion	Angelo_ Friccion	Permeabilid d	a Tipo_ Suelo	Simbolo_ Suelo
2 1	589137.3	1131215.8	20	11.43	43.72	23.17	21.11	37.83	18.97	18.96	2.58	0.32	17	4.34634	Arcilla Linosa	CL
3 2	583073.6	1131184.3	20	11.67	48.14	35.37	16.43	31.19	17.67	13.52	2.64	0.32	17	3.797928	Arcilla Linosa	CL
+ 3	583043.4	1131038.3	20	11.04	34.75	44.50	20.75	33.87	30.02	3.85	2.60	0.26	30	1.013544	Limo Orgánico	
6 5	588948.8	1131163.1	20	11.04	43.44	34.40	16.08	21.27	10.38	10.23	2.00	0.31	10.1	6.371244	Arcita Linosa	
1 6	588872.3	1131116.8	20	11.12	48.24	35.05	16.63	27.52	23.61	3.91	2.03	0.32	30.46	10363344	Line Orafaice	
8 7	588734.1	1130646.6	20	15.36	43.78	3154	18.68	30.00	21.83	8.17	2.61	0.32	17	6,284268	Arcilla Linosa	CL
9 8	588843.7	1130625.3	20	18.43	42.86	35.54	21.60	28.83	14.50	14.33	2.61	0.32	17	5.206368	Arcilla Linosa	CL
10 9	588304.5	1130625.5	20	17.33	33.63	38.60	21.71	26.12	12.03	14.03	2.67	0.31	18.1	5.084604	Arcilla Linosa	CL
11 10	588835.5	1130588.6	20	18.14	27.21	42.36	30.43	42.52	28.39	14.13	2.55	0.26	30	2.4665304	Lino Orgánico	OL
12 11	588383.8	1130545.8	20	18.53	38.31	36.54	24.15	33.02	35.30	3.12	2.52	0.23	30.46	1.084332	Limo Orgánico	OL
13 12	583033.4	1130543	20	18.70	44.20	34.71	21.03	30.22	26.97	3.25	2.66	0.26	30	1.546668	Lino Orgánico	OL
14 13	588173.8	1130563.7	20	18.38	47.73	30.42	21.85	25.00	21.43	3.51	2.57	0.26	30	2.33031	Lino Orgánico	OL
10 14	583220.5	1130783.1	20	13.36	48.88	31.33	13.73	24.53	22.83	170	2.64	0.26	30	0.886482	Limo Orgânico	OL
1/ 16	503133.5	1130724.3	20	13.32	43.32	20.0	21.33	25.55	22.40	0.36	2.64	0.23	30.46	1.0143676	Lino Organico	
18 17	583035.8	1130767.3	20	13.67	3106	38.74	30.20	42.60	33.30	2.68	2.50	0.23	30.46	10563348	Line Orgánico	01
19 18	588380	1130837.6	20	13.43	41.66	33.35	24.33	26.41	25.46	0.35	2.68	0.26	30	0.3765288	Lino Orgánico	OL
20 19	583036	1130355.5	20	6.27	36.51	38.22	25.27	38.83	34.83	4.00	2.53	0.23	30.46	0.3780336	Limo Orgánico	OL
21 20	588981.1	1130435.2	20	6.10	36.51	38.22	25.27	30.62	28.52	2.10	2.58	0.26	30	0.8065728	Limo Orgánico	OL
22 21	588850.1	1130468.7	20	6.40	48.62	23.30	21.48	34.50	25.82	8.68	2.60	0.23	30.46	1.8186048	Limo Orgánico	OL
23 22	588771.2	1130391.7	20	6.11	33.66	37.28	23.06	24.35	23.46	153	2.56	0.26	30	0.3752688	Limo Orgánico	OL
24 23	588665.2	1130225.6	20	13.93	41.07	35.48	23.45	24.53	22.24	2.23	2.54	0.24	30.46	1.158102	Lino Orgánico	OL
20 24	588783.8	1130247.4	20	13.32	38.59	34.51	26.30	30.62	28.52	2.10	2.68	0.26	30	1.0146276	Lino Orgánico	
20 25	506805.2	1130176.8	20	12.76	34.74	33.23	25.37	33.42	23.01	4.41	2.54	0.23	30.46	1.1152224	Limo Orgánico	
28 27	5887327	1129976.9	20	10.02	91.0	44.09	23.33	31.51	04.65	0.26	2.60	0.23	20.46	0.9511524	Line Orginice	
29 28	5888631	1130158.5	20	12.33	32.10	38.16	23.74	37.52	23.03	8.43	2.60	0.31	30	0.3432132	Line Orginice	
30 23	588857.4	1130020.3	20	12.44	30.67	41.73	27.60	42.11	38.68	3.43	2.58	0.23	30.46	1.4286636	Lino Orgánico	OL
31 30	588352.7	1123621.2	20	13.40	48.31	31.74	13.35	23.32	24.58	4.74	2.66	0.24	30.46	0.38333316	Lino Orgánico	OL
32 31	588834.1	1123602.5	20	18.21	47.78	23.37	22.25	33.61	31.33	2.28	2.67	0.26	30	1.1162556	Lino Orgánico	OL
JJ 32	588736.3	1123534.7	20	18.63	44.18	33.6	22.22	35.21	33.72	1.43	2.61	0.23	30.46	1.0011312	Lino Orgánico	OL
34 33	588547.3	1123650.3	20	13.46	43.87	23.18	20.35	28.07	27.43	0.58	2.52	0.31	30.46	0.3386376	Lino Orgánico	OL
35 34	588466	1123580	20	13.73	44.46	33.44	22.1	32.73	27.10	5.63	2.62	0.23	30.46	1.033536	Lino Orgánico	OL
30 35	588383.6	1123630.4	20	13.16	33.54	41.34	25.12	27.33	26.67	0.66	2.61	0.26	30	0.7826616	Lino Orgánico	OL
31 36	588413.3	1123751.3	20	13.92	46.65	32.12	21.23	40.52	34.83	5.63	2.53	0.26	30	1.0236108	Lino Orgánico	OL
30 37	588486.7	1123813.7	20	13.78	46.41	30.12	23.47	31.44	28.52	2.32	2.58	0.26	30	1.1062512	Limo Orgánico	
33 38	588541.7	1123718.5	20	13.41	35.51	31.53	26.36	34.82	25.82	3.00	2.60	0.23	30.46	0.3835536	Limo Orgánico	
41 40	500238.4	1123684.1	20	10.21	46.67	36.45	21.46	27.66	11.00	10.50	2.63	0.31	10.0	4.0146.40	Arcina Limosa	
42 41	500216.3	1123640.3	20	10.30	40.51	20.31	23.36	20.0	10.05	16.33	2.10	0.32	18.09	4.014648	Arcina Limosa	
4.1	58794 4	1129717	20	13.31	43.13	3133	24.00	33.64	20.14	13.59	2.55	0.31	17	4.604544	Arcilla Limona	CL
44 43	587878.5	1123686.1	20	14.11	48.23	31.13	20.58	28.95	4.35	24.04	2.77	0.31	18.1	5.103072	Arcilla Limora	CL
45	E07774 7	1100000.7	1 00 .	1 4 100	10.00	0745	20.30	00.00	04.70	10.54	0.65	0.01	10.1	1 10650	A collection of the second	
	M Hoi	ia1 /H	oia2 H	nia3 🖄	/							_				
			-j / 10	,,										10		
Listo															···· 10	ATM6 ()-

Figura 17. Selección de los Puntos, Coordenadas y Resultados. Fuente: Araujo, J; Mata, F. (2009).

• En Excel, en el menú Archivo→Guardar como→Guardar en.., navegar hasta C:\Potrerito. En Nombre de archivo, digite Resultados. En Guardar como tipo, seleccionar la opción del menú desplegable; DBF 4 (dBASE IV) (*.dbf).

• Aceptar la opción en la ventana emergente que indica guardar sólo la hoja activa.

• Hacer clic en Si, para conservar el formato y eliminar las características no compatibles.

• Verificar que el archivo Resultados.dbf ha sido añadido en la ubicación seleccionada.

• Abrir ArcCatalog y en el catalogo de datos, hacer clic en la carpeta Potrerito.

• Hacer clic sobre el archivo de tabla Resultados.dbf y previsualizar la tabla. (Ver figura 18)
e Edit View Go Tools Window Help												_
	~ ~	-			L dib.							
	× 🥝	ن ي] k a ∣ et e		35							
cation: C\LaColonia\R_20.dbf				•								
wesheet FGDCESRI 🖵 🚽 🗐 🛛	an 4an a	4										
	Cont	ents P	review Metadata									
Film signa v tao	Π	Punto	x	Y	Profundida	Conteniedo	Arena	Limo	Arcilla		LP	IP
E Tabla de resultados definitiva		1	583838,1082	1127206.12	10	31.87	42.02	51.6-8	6.30	38.00	32.46	Т
iii 'capa 20cms\$'		5	583313.8815	1127323.03	10	37.41	44.07	49.63	6.30	42.70	38.32	t
- III Hoja2\$		3	590084.3698	1127286.6	10	36.40	46.37	48.70	4.93	39.60	34.27	t
III Resultados\$		4	589718.4605	1127592.83	10	32.29	42.57	49.49	7.95	27.00	22.85	Т
🗄 🗍 PotreritoImgage		5	589888.8694	1127587.12	10	34.21	45.63	\$0.75	3.56	30.00	24.78	Т
ProyectoPotrerito		6	589992.0105	1127710.24	10	24.11	44.92	48.78	6.30	27.00	22.85	Т
LIMITES DE CONSISTECIA		7	589204.1223	1127637.6	10	3.72	45.67	46.66	7.67	34.60	30.45	Т
Mapa_P_Muestreo		8	589359.6036	1127518.2	10	34.41	45.53	46.74	7.67	23.00	24.27	Т
PLimite liquido		э	589477.8672	1127678.22	10	22.60	43.50	47.46	3.04	37.50	33.19	Т
E Prueba		10	583631,731	1127310.18	10	23.65	41.80	43.16	3.04	42.70	37.40	Т
E puntos		11	569457.7368	1127214.37	10	29.58	44.38	48.72	6.30	23.40	25.93	Т
El puntosWC994		12	589208.3864	1127152.31	10	36.27	44.88	46.43	8.63	33.20	27.88	Т
ELEB PLINTOSWC584		13	588527.1561	1127438.77	10	6.63	44.43	46.53	9.04	37.00	30.93	Т
		14	589019.4338	1127271.62	10	3.36	44.71	47.62	7.67	31.00	27.18	Т
III R 40		15	589372.1463	1127370.8	10	11.11	45.18	47.15	7.67	34.50	27.71	Т
III Resultados		16	589226.2333	1127315.15	10	9.55	43.31	48.75	7.95	27.00	23.74	Т
Resultados20		17	589134,6725	1127425.49	10	27.15	45.42	49.65	4.33	29.57	26.17	Т
Resultados20.xls		18	589045,9775	1127606,49	10	23.33	41.55	51,88	6.58	23.00	25.24	Т
B Resultados40		19	589425.9858	1127739.52	10	15.47	40.70	56.70	2.60	33.42	26.60	Т
X Resultados40.xls		20	589227.7293	1127323,46	10	28.02	43.33	54.01	2.60	31.23	26.50	Т
🖭 🔁 resultados_sigma y tao		21	583054,4341	1127673.74	10	22.53	42.70	52.37	4.33	33.00	27.83	Т
- III tao		8	563336,647	1128175.46	10	13.19	43.44	51.6-3	4.33	31.00	24.52	Т
🗄 💹 Usos_Tierra_Potrerito		8	589349,1431	1128046.43	10	23.41	41.39	49.98	8.63	33.50	28.84	T
🗉 🔜 Potrerito_tesis(prueba)		24	583184.7138	1128035.22	10	22.97	41.53	52.17	6.30	31.97	27.17	T
Program Files		ne -							i		1	1
Proyecto_Potrerito	<											
Python24				<u> </u>						0.11		

Figura 18. Tabla de Resultados en Formato.dbf. Fuente propia Araujo, J; Mata, F. (2009).

Ahora se puede crear una capa de Resultados con referencia geográfica en ArcGIS.

Exportación de la tabla DBASE a la geobase de datos

• Situar el puntero sobre el archivo Resultados.dbf, hacer clic en botón derecho del Mouse y seleccionar la opción Export→To Geodatabase (Single).(Ver figura 19)

• En la ventana de dialogo Table to Table, para Input Rows, deberá aparecer automáticamente C:\Potrerito\Resultados.dbf.

• En la ventana de dialogo Table to Table, para Output Location, navegar hasta C:\Potrerito\ProyectoPotrerito.gdb.

- En el cuadro para Output Table, digitar Resultados.
- Hacer clic en OK para aceptar.

ArcC	atalog – ArcInfo – C:\La Colonia\Resultados.dbf
* Tabl	to Table
	Insuit Deven
	CML - Colorid Development of a
	Output Location
	C.\LaColonia\proyectoLacolonia.gbd 🗃
•	Output Table
	JResultados
	Expression (optional)
	50.
	Field Map (optional)
	t±··X (Long)
	PROFUNDIDA (Long)
	CONT_HUMED (Double)
	🗄 LL (Double)
	⊡ LP (Double)
	TIPO_SUELO (Text)
	in SIMBOLO_SU (Text)
	OK Cancel Environments << Hide Help

Figura 19. Ventana Table to Table. Fuente propia Araujo, J; Mata, F. (2009).

• Extender ProyectoPotrerito.gdb para visualizar la tabla Resultados dentro de geobase de datos.

Creación de la clase de elementos (feature class) de puntos dentro de la geobase de datos.

• Situar el puntero sobre el archivo Resultados.dbf en la geobase de datos, hacer clic en botón derecho del Mouse y seleccionar la opción Create Feature Class→ From XY Table.(Ver figura 20)

e <u>E</u> dit <u>V</u> iew <u>G</u> o <u>T</u> ools <u>W</u> indow <u>H</u> elp												
. 😂 🍋 🖻 🔍 🖕 🏥 🏾 🖽		۹ 🔕		?] @ @ «) • • •	88						
ation: C:\LaColonia\R_20.dbf					•							
esheet: 🛛 FGDC ESRI 🔄 🚽 🖆												
	x	Contents	Preview	Metadata								
ploteo de resultados ima sigma y tao		OID	Punto	X	Y	Profundida	Conteniedo	Arena	Limo	Arcilla	IL	LP
🗆 📾 tabla de resultados definitiva) 1	589838.108	1127206.12	10	31.87	42.02	51.68	6.301	38.00	32.4
icana 20cms\$'			1 2	589913.882	1127323.03	10	37.41	44.07	49.63	6.301	42.70	38.3
III Hoja2\$			2 3	590084.37	1127286.6	10	36.40	46.37	48.70	4.9312	39.60	34.2
		H	3 4	589718.461	1127592.83	10	32.29	42.57	49.49	7.945	27.00	22.8
Ti Resultadoss			1 4	589888.869	1127587.12	10	34.21	45.69	50.75	3.561	30.00	24.7
		H .		589992.011	1127710.24	10	24.11	44.92	48.78	6.301	27.00	22.8
				589204.122	1127637.6	10	9.72	45.67	46.66	7.6708	34.60	30.4
EIMITES DE CONSISTECIA				589359.604	1127518.2	10	34.41	45.59	46.74	7.671	29.00	24.2
+ Mapa_P_Muestreo				089477.867	112/6/8.22	10	22.60	43.5	47.46	9.0405	37.00	33.1
🗉 🎆 PLimite liquido			5 8	589691.791	112/310.18	10	23.60	41.8	49.16	9.0400	42.70	31.4
🚊 Prueba		<u> </u>	9 10	589451.139	112/214.37	10	29.58	44.98	48.72	0.301	29.40	20.9
🔲 🗐 puntos		1) 11	289208.386	1127152.31	10	30.27	44.88	46.49	8.03	33.20	21.8
PUNTOSWG584		1	1 12	590010 424	1127436.77	10	0.05	44.45	40.55	9.0400	21.00	30.9
		1:	2 13	5902701454	1127270.9	10	9.90	44.71	47.62	7.6709	24.50	27.1
🗄 🚾 PUNTOSWG584		1:	3 14	590006.022	1127215.15	10	0.55	42.10	47.15	7.0708	34.00	21.1
		1.	4 15	580134.673	1127/05/0	10	27.15	45.01	40.75	/ 021	27.00	25.7
🗐 🖓 Copy Ctrl+C		1:	5 16	590045.079	1127606.49	10	27.15	41.55	51.99	6.575	22.27	20.1
		1	5 17	589425 986	1127739 52	10	15.47	40.7	56.70	2.603	33.42	26.6
Elete		1	7 18	589227 729	1127929.46	10	28.02	43 39	54.01	2.603	31.23	26.5
	=	1	3 19	589054,434	1127873 74	10	22.59	42.7	52.37	4.931	33.00	27.8
Rename F2			a 20	589336.647	1128175 46	10	13.19	43.44	51.63	4.931	31.00	24 5
			1 24	589349,143	1128046.49	10	23.41	41.39	49.98	8.63	33.50	28.8
Export			2	589184.714	1128095.22	10	22.97	41.53	52.17	6.301	31.97	27.1
# @ r			1 22	589181.354	1128221.14	10	31.74	40.39	50.57	9.041	36.95	27.8
🛄 t 🛛 Create <u>F</u> eature Class 🕨		From XY Ta	ble	589059.817	1128153.26	10	21.95	41.29	53.78	4.931	30.00	25.9
🕒 🏢 U				589105.805	1128015.16	10	24.41	43.5	50.20	6.3	33.07	27.5
Potre 🚱 Geocode Addresses		2	4 25	588871.14	1128165.07	10	18.33	42.61	50.14	7.2528	32.47	28.0
Prog Prog		2	5 26	588807.952	1127882.33	10	32.06	40.94	52.49	6.575	34.00	29.4
Proy Properties		2	6 27	588591.228	1128158.23	10	20.46	42.44	49.89	7.6708	36.50	32.2
+ Pyth		<										>
· · · ·												
+ 🦳 WINDOWS					1.1		1				1	

Figura 20. Create Feature Class From XY Table. Fuente propia Araujo, J; Mata, F. (2009).

• En la ventana de dialogo, Create Feature Class from XY Table. Para el campo X, seleccionar N1 y para el campo Y, seleccionar N2. (Ver figura 21)

Create Feature Class From XY Table 🛛 🔹 🔀
Input Fields
X Field:
X
Y Field:
Y
Z Field:
<none></none>
Coordinate System of Input Coordinates
Output
Specify output shapefile or feature class:
C:LaCobna\ProyectoLaColonia.gcb\Registrc_de
Configuration keyword:
DEFAULTS
Advanced Geometry Options
OK Cancel

Figura 21. Selección de Coordenadas Para la Clase de Elementos de la Tabla. Fuente propia Araujo, J; Mata, F. (2009).

• En el botón Coordinate System of Input oordinates→Select→Projected Coordinate System→UTM→Wgs1984→WGS 194 UTM Zone 19.prj. (Ver figura 22)

Browse for C	oordinate System		
Look in: 📋	Wgs 1984	- <u>-</u>	註 甜 問
WGS 1984 U	ITM Zone 18N.prj	WGS 1984 UTM Zone 21S.prj	@wgs :
@WGS 1984 U	ITM Zone 18S.prj	🕲 WGS 1984 UTM Zone 22N.prj	@wgs :
WGS 1984 U	ITM Zone 19N.prj	WGS 1984 UTM Zone 22S.prj	@wgs:
@WGS 1984 U	ITM Zone 19S.prj	🕲 WGS 1984 UTM Zone 23N.prj	@wgs :
🕲 WGS 1984 U	ITM Zone 1N.prj	🛞 WGS 1984 UTM Zone 23S.prj	@wgs:
🕲 WGS 1984 U	ITM Zone 1S.prj	🛞 WGS 1984 UTM Zone 24N.prj	@wgs:
🕲 WGS 1984 U	ITM Zone 20N.prj	🛞 WGS 1984 UTM Zone 24S.prj	@wgs:
🕲 WGS 1984 U	ITM Zone 20S.prj	🕲 WGS 1984 UTM Zone 25N.prj	@wgs:
@WGS 1984 U	ITM Zone 21N.prj	BVGS 1984 UTM Zone 25S.prj	@wgs:
<			>
Name:	WGS 1984 UTM Zone	e 19N.prj	Add
Show of type:	Coordinate Systems	•	Cancel

Figura 22. Selección del Sistema de Coordenadas. Fuente propia Araujo, J; Mata, F. (2009).

• En Output guardar el archivo en la geobase de datos: C:\Potrerito\ProyectoPotrerito.gdb\P_Muestreo.

- Aceptar la configuración por defecto y OK.
- Extender Potrerito.gdb y verificar que P_Muestreo.shp ha sido añadido a la

lista de feature class contenidos en la geobase de datos ProyectoPotrerito.gdb.

Importación de la clase de elementos de puntos hacia el archivo de cobertura ubicado dentro de la geobase de datos

 Hacer clic derecho en el archivo de cobertura Usos_de_Tierra y seleccionar Import→Feature Class Single.

• En la ventana de diálogo Feature Class to Feature Class. En Input Feature navegar a C:\Potrerito\ProyectoPotrerito.gdb\P_Muestreo.

- En Output Location; C:\Potrerito\ProyectoPotrerito.gdb\Usos_de_Tierra.
- En Output Feature Class, digitar P_Muestreo.
- Hacer click en OK.

• Previsualizar el elemento. En Metadatos \rightarrow Spatial, observar que automáticamente el Sistema de Coordenadas de la Proyección ha cambiado al del archivo cobertura para garantizar alineamiento de los elementos, **REGVEN UTM Zone 19.**

Creación de un campo común en el archivo parcelas y el archivo de puntos dentro de la cobertura.

La creación de un campo común busca asignar los puntos de muestreo al polígono o parcela que corresponden. Para garantizar ello, se creará un campo numérico denominado UNIPAR, en las tablas de atributos para puntos de muestreo y en las tablas de atributos de las parcelas. El número asignado a cada elemento es arbitrario. En la tabla de atributos para puntos de muestreo, se repetirá el número en todos aquellos puntos que pertenezcan a un polígono o parcela en específico y este mismo número será asignado en la tabla de atributos al polígono asociado a los puntos seleccionados antes. (Ver figura 23)

• En ArcMap, añadir C:Potrerito\ProyectoPotrerito.gdb a la Tabla de Contenidos, situar el puntero sobre el archivo Parcelas, hacer clic en el botón derecho del Mouse y seleccionar Open Attribute Table. Repetir éste procedimiento con el elemento P_Muestreo.

• En la tabla de atributos del elemento Parcela, presionar el botón Options→Add Fields..En la ventana Add Fields, colocar el nombre UNIPAR, para Type seleccionar Long Integer y en Alias repetir el nombre UNIPAR.

• En la tabla de atributos del elemento P_Muestreo, presionar el botón Options→Add Fields..En la ventana Add Fields, Colocar el nombre UNIPAR, para Type seleccionar Long Integer y en Alias repetir el nombre UNIPAR.

- Activar la barra de Edición, en View→Toolbar→Editor.
- En Editor \rightarrow Start Editing.

• Abrir la ventana de la tabla P_Muestreo, y resaltar la primera fila, minimizar la pantalla y observar cuál punto se ilumina en la pantalla de ArcMap, asignar un numero arbitrario, por ejemplo, 1001.

• Repetir este procedimiento, hasta asignar el mismo número a todos los puntos que se encuentran dentro del polígono de la parcela.

• Asignar otro número a los elementos de la parcela contigua, ejemplo, 1002.

• Repetir el procedimiento anterior hasta identificar completamente con un número común los elementos contenidos en cada parcela.

	Attributes	of IPmuetr	eo_10									. 🗆 🛛
	X	Y	Profundida	Conteniedo	Arena	Limo	Arcilla	LL	LP	IP	Gravedad_E	Cohesio ۸
	589137.2944	1131215.804	10	11.43	49.72	29.17	21.11	37.925	18.97	18.955	2.58	0.32
	589079.5658	1131184.943	10	11.67	48.14	35.37	16.49	31.185	17.67	13.515	2.64	0.32
	589049.3584	1131098.863	10	11.04	34.75	44.5	20.75	33.865	30.02	3.845	2.6	0.25
	588991.5445	1131101.789	10	11.04	49.44	34.48	16.08	27.268	10.98	16.288	2.68	0.3
	588948.7958	1131163.112	10	11.79	47.72	35.65	16.63	25.395	14.94	10.4555	2.63	0.32
	588872.8511	1131116.848	10	11.12	48.24	35.3	16.46	27.52	23.61	3.91	2.56	0.28
	588734.0796	1130646.55	10	15.96	49.78	31.54	18.68	29.999	21.83	8.169	2.61	0.32
	588849.7474	1130625.34	10	18.43	42.86	35.54	21.6	28.831	14.5	14.3315	2.61	0.32
	588904.5119	1130625.478	10	17.33	39.69	38.6	21.71	26.117	12.03	14.0875	2.67	0.3
	588895.4772	1130588.596	10	18.14	27.21	42.36	30.43	42.515	28.39	14.1255	2.55	0.25
	588983.8172	1130545.817	10	18.59	39.31	36.54	24.15	39.019	35.9	3.119	2.52	0.28
	589099.4392	1130543.036	10	18.7	44.2	34.71	21.09	30.223	26.97	3.253	2.66	0.25
	588773.84	1130563.718	10	18.38	47.73	30.42	21.85	25	21.49	3.51	2.57	0.25
	589220.518	1130789.067	10	13.36	48.88	31.39	19.73	24.525	22.83	1.695	2.64	0.25
	589135.4918	1130724.35	10	13.32	49.92	28.75	21.33	25.554	22.48	3.074	2.64	0.28
	589144.4642	1130785.803	10	13.19	46.92	31.95	21.13	33.655	33.3	0.3555	2.58	0.28
	589095.8314	1130767.251	10	13.87	31.06	38.74	30.2	42.604	39.92	2.6845	2.6	0.28
	588980.04	1130837.606	10	13.49	41.66	33.95	24.39	26.414	25.46	0.9545	2.68	0.25
Þ	589036.0191	1130355.511	10	6.27	36.51	38.22	25.27	38.833	34.83	4.003	2.53	0.28 💙
<												>
	Record: I	• •	19) 	Show: All	Selected		Records (1	out of 4	7 Select	ed)	Options	•

Figura 23. Tabla de Atributos de Los Puntos de Muestreos a 10cm. Fuente: Araujo, J; Mata, F. (2009).

• Repetir este procedimiento en la Tabla Parcelas. (Ver figura 24)

	Attributes o	f Parcelas					_ 6	
Π	OBJECTID *	SHAPE *	UNIPAR	SHAPE_Length	SHAPE_Area	CODIGO_UT		^
	35	Polygon	1001	1306.026131	91136.341536	Agricola		
	36	Polygon	1050	967.560172	41999.167766	Agricola		
	37	Polygon	1060	723.456171	27536.495618	Agricola		
Π	38	Polygon	1070	805.261108	44908.720946	Agricola		
Π	39	Polygon	1002	1721.425272	135719.845751	Agricola		
	40	Polygon	1003	1425.590072	65543.723983	Agricola		
Π	42	Polygon	1004	1348.043143	63646.307052	Agricola		
Π	43	Polygon	1005	1274.110901	71051.035339	Agricola		
Π	44	Polygon	1006	1180.635447	61428.495791	Agricola		
Π	45	Polygon	1007	1267.851089	84999.01147	Agricola		
Π	46	Polygon	1090	1056.777969	49180.000353	Agricola		1
Π	47	Polygon	1095	775.38713	31888.837164	Agricola		
Π	48	Polygon	1097	715.355089	27686.361235	Agricola		
Π	49	Polygon	1008	960.967584	59481.895781	Agricola		
Π	50	Polygon	1009	819.031326	33258.883983	Agricola		
Π	51	Polygon	1010	780.00474	34297.863272	Agricola		
	52	Polygon	1098	619.783076	21144.645753	Agricola		
	53	Polygon	1099	568.498963	17681.073756	Agricola		
	54	Polygon	1056	682.253804	29821.828665	Recreacional		
	55	Polygon	1057	787.029075	39381.381997	Residencial		
	56	Polygon	1058	740.405946	33778.164528	Agricola		- L
	57	Polygon	1059	750.981706	26775.882225	Avicola		
	58	Polygon	1061	888.182067	39754.453039	Agricola		
	59	Polygon	1062	907.153342	41695.558037	Agricola		
	61	Polygon	1063	1104.674343	51100.623045	Agricola		
	63	Polygon	1064	616.196528	25041.874111	Agricola		
	64	Polygon	1067	710.211531	32385.091912	Agricola		
	65	Polygon	1068	1062.092953	62295.196755	Agricola		
	67	Polygon	1069	1411.882222	71136.934489	Agricola		
	68	Polygon	1041	1499.709667	65312.103178	Agricola		6
	Record: I	•		Show: All Sel	ected Reco	rds (0 out of 43 Sele	cted) Options -	

Figura 24. Tabla de Atributos de Las Parcelas. Fuente: Araujo, J; Mata, F. (2009).

Unión de tablas de los atributos de la clase de elementos puntos y la clase de elementos parcelas

• En la Tabla de Contenidos, situar el puntero sobre el elemento, hacer clic con el botón derecho del Mouse y seleccionar Parcelas→Properties→Joins & Relates.

• En Join, presionar Add, se activará la ventana de diálogo de Adición.

• A la pregunta de que deseas unir a esta capa, seleccionar la opción, Unir atributos desde una tabla, (Join attribute from table).

• En la opción para escoger el campo, del menú desplegable seleccionar el campo común UNIPAR.

- En la selección de la tabla a unir, escoger P_Muestreo.
- Escoger el campo en la tabla para la base de la unión, denominado UNIPAR.

• Hacer clic en OK, para que se procese la unión de los atributos de la tabla de puntos a la tabla de parcelas. (Ver figura 25)

	Jaca			
Join le for exi	ets you append additi ample, symbolize the	onal data to thi layer's features	s layer's attribut using this data	e table so you can,
What	do you want to join to	o this layer?		
Join	attributes from a table			•
1.	Choose the field in t	his layer that th	e join will be ba	sed on:
	UNIPAR			•
2.	Choose the table to	join to this laye	r, or load the tal	ble from disk:
	P muetreo			- ₽
	Show the attribut	ite tables of lay	ers in this list	
2	Changes the field in th			
3.	Choose the field in t	he table to bas	e the join on:	
3.	Choose the field in ti UNIPAR	he table to bas	e the join on:	•
3.	Choose the field in t	he table to bas	e the join on:	•
3.	Choose the field in t	he table to bas	e the join on:	Advanced
3.	Choose the field in t	he table to bas	e the join on:	▼ Advanced
3.	Choose the field in t	he table to bas	e the join on:	▼ Advanced
3.	Choose the field in t	he table to bas	e the join on:	▼ Advanced
3.	Choose the field in t	he table to bas	e the join on:	▼ Advanced
3.	Choose the field in t	he table to bas	e the join on:	Advanced
3. Abc	Choose the field in t	he table to bas	e the join on:	Advanced

Figura 25. Unión de Tablas de Atributos de la Clase de Elementos Puntos. Fuente: Araujo, J; Mata, F. (2009).

• Situar el puntero sobre el elemento Parcelas, y hacer clic con el botón derecho para ver la unión de los campos a la tabla de la clase de elementos de Parcelas. (Ver figura 26)

General Source S	election Display	y Symbology	Fields	Definition Qu	ery Label:	s Joins & Relate	es
Primary Display Fi	eld:	Parcelas.C	ODIGO_U	r		•	
Choose which field	s will be visible. C	lick in the alias	column to	edit the alias	for any field	d.	
Name	Alias	Туре	Length	Precision	Scale	Number Forma	at 🔼
Parcelas.OBJ	OBJECTID	Object ID	4	0	0		
Parcelas.SHA	.SHAPE	Polygon					=
Parcelas.SHA	.SHAPE_Length	Double	8	0	0	Numeric	
Parcelas.SHA	.SHAPE_Area	Double	8	0	0	Numeric	
Parcelas.COD.	CODIGO_UT	Text	3	0	0		
Parcelas.UNI	UNIPAR	Long	4	0	0	Numeric	
P_muetreo.0	OBJECTID	Long	4	9	0	Numeric	
P_muetreo.P	P_muetreo.PUN	TO Long	4	0	0	Numeric	
P_muetreo.X	P_muetreo.X	Long	4	0	0	Numeric	
P_muetreo.Y	P_muetreo.Y	Long	4	0	0	Numeric	💌
Coloret All	Class All						
	Ciear All						
					Aceptar	Cancelar	Aplicar

Figura 26. Unión de Tablas de Atributos de la Clase de Elementos Parcelas. Fuente: Araujo, J; Mata, F. (2009).

Visualización mediante simbología de las propiedades físicas

• En la capa de propiedades del elemento Parcelas, hacer clic en Simbology→Show→Quantities→Graduate Colors.

• En el cuadro Fields, seleccionar Value→P_Muestreo.LL para límite líquido, esta será el primer atributo a visualizar.

• En Label, hacer clic y seleccionar Format Label.

• En el Cuadro de dialogo de Format Label→Numeric, ajustar el número de decimales a 2. Hacer clic en Aplicar.

• Hacer clic en Aceptar en la ventana de propiedades.

Los pasos de la visualización deben repetirse para cada una de las propiedades físicas contenidas en la Tabla de atributos de Parcelas.

Creación de mapas de propiedades físicas

Una vez completado seleccionado el atributo a visualizar, aplicar una plantilla cartográfica para presentar sus resultados. El cuerpo gráfico del mapa es el componente individual más importante del mismo, sin embargo los otros elementos que le acompañan y su distribución alrededor del cuerpo del mapa pueden influenciar positiva o negativamente la idea que se desea comunicar del mapa. ArcGIS contiene varios mapas prediseñados (plantillas), los cuales pueden ser utilizados por el usuario para facilitar la tarea de elaborar un mapa con la apariencia profesional. Se pueden crear diseños propios. En este paso se utilizará un diseño predefinido en la creación de una composición cartográfica. La plantilla está creada.

• En ArcMap. Hacer clic en View \rightarrow Layout View.

• En la barra de herramientas Layout, hacer clic sobre el botón de cambiar composición (Change Layout)

• En la ventana de diálogo Select Témplate, hacer clic en la pestaña General.

• Hacer clic sobre las diferentes opciones de plantillas, y seleccionar LetterPortrait.mxt.

• Hacer clic para finalizar (Finish).

• Observar que la plantilla se ha cargado a la vista de Layout. El mapa está integrado por el título, la imagen, barra de escala, flecha de norte y leyenda.

• Hacer clic sobre la imagen raster para activar los cuadros de movimiento y ajustar la imagen, hasta que la leyenda sea visible.

• Insertar el título, y hacer doble clic sobre el cuadro del título, hacer clic sobre el botón para cambiar el símbolo (Change Symbol...), ajustar el tamaño en 20. hacer clic en OK, y en el siguiente cuadro, aceptar y aplicar.

• Si se desea personalizar el mapa, hacer clic en Insert, y observar que se puede añadir texto, escala en texto y otras opciones.

Añadir mapa de diseño (layout) a otro documento (opcional)

Los mapas pueden ser previsualizados, impresos, exportados, o añadidos a otro documento que cumpla con los estándares OLE.

Primero crear un archivo de exportación que contenga el mapa, Añadir el mapa a un documento de Microsoft Word (Word), Luego importar el archivo en Word.

Exportar el mapa a un archivo de salida de formato BMP.

• En el menú principal ArcMap, hacer clic en File>Export map.

• Para la opción "Save in", navegar a la carpeta C:\Potrerito.

• Para la opción "Save type as", hacer clic a BMP (*.BMP) para el formato de Windows Bitmap.

• Para el nombre de archivo de salida (File Name), teclear Limite_Liquido.

- Hacer click en Guardar.
- Iniciar Word.

Insertar el archivo BMP en el documento de Microsoft Word.

• En Word, hacer clic en Insertar>Imagen>Desde archivo, para desplegar el menú Isertar imagen.

• Para los tipos de archivos (File Type), hacer clic en Windows Bitmap (*.bmp, *.dib, *.rle,*.bmz).

• Para Look in (Ver en), navegar hasta donde se guardó el archivo bitmap (por ejemplo, la carpeta Potrerito).

• Hacer clic en Limite_Liquido.bmp y haga clic en Insertar.

Si el mapa no se ajusta bien, o hay otros problemas, experimentar con el redimensionamiento de la página de impresión (layout) y otros elementos de mapas.

• Guardar su documento de Word como Mapa de Limite_Liquido.doc. Este será un documento para Trabajo de Grado.

• Salir de Microsoft Word.

Procedimiento II: Creación de simbología de características físicas de suelo mediante puntos

En el procedimiento I, se utilizó polígonos para representar las propiedades físicas de suelos. Como una alternativa adicional de representación se ilustra cómo hacer simbología con puntos. Para ello, se usará el archivo de puntos de muestreo, P_Muetreo.shp contenido en la cobertura Usos_de_Tierra.cov, cuya tabla de atributos contiene los resultados de la caracterización, se ilustra el caso para el límite líquido, límite plástico e Índice de plasticidad.

Visualización mediante simbología de las propiedades físicas

• En la capa de propiedades del elemento P_Muestreo, hacer clic en Simbology→Show→Quantities→Charts.

• En el cuadro Fields Selection, seleccionar LL para límite Líquido, LP para límite plástico e IP para índice de plasticidad, estos serán los atributos a visualizar mediante barras.

- Es tamaño (size), colocar en 70, pulsar OK.
- Hacer clic en Aceptar en la ventana de propiedades.

Los pasos de la visualización deben repetirse para cada una de las propiedades físicas contenidas en la Tabla de atributos de Puntos.(Ver figura 27)

Figura 27. Creación de Mapas de Propiedades Físicas Representación en Gradación De Colores. Fuente: Araujo, J; Mata, F. (2009).

Análisis estadístico

Statgraphics es un Procedimientos estadístico el cual para la realización de esta investigación será empleado para comparar las diferencias significativas y la variabilidad que puedan existir entre cada uno de los puntos muestreados en el sector en estudio.

Procedimiento para el uso de Statgraphics.

La versión Windows del Statgraphics muestra una ventana (Statfolio) con una barra de opciones dentro de las cuales encontramos varios submenus agrupados en bloques temáticos.(Ver figura 28)

			- 08. 6. · · ·	C. C		<u> </u>				
Libro de Datos		6 🖬 🏢 🖶	圖部⇔≈	° 💭 🛄, 🗡 E	tiqueta:	(M) Fila:	<i>4</i> 4			
StatAdvisor	sin tít	ulo>								
StatGallery		Col 30	Col 31	Col 32	Col 33	Col 34	Col 35	Col 36	Col. 37	0
StatReporter							001_00			
Comentarios del StatFolic	1									
	2									-
	3									
	4									
	5									
	6									
	7									
	8									
	9									
	10									_
	11									-
	12									-
	13									-
	15									-
	16									
	17									-
	18									
	19									
	20									
	21									
	22									
	23									-
	24	ABCD	FEGH	1/1/						
										_

Figura 28. Ventana principal de Statgraphics. Fuente: Araujo, J; Mata, F. (2009).

Archivo: Permite la creación y manipulación de archivos, entre las opciones destaca.

Open (Close): Abre (Cierra) Statfolios, un archivo de datos o una Statgallery.

Editar: Permite labores relacionadas con la edición de archivos.

Medir: Permite acceder a los diferentes tipos de gráficos disponibles en el programa.

Analizar: Permite un análisis descriptivo de los datos.

Definir: Permite acceder a tipos de análisis que generan y comparan estadísticos descriptivos.

SnapStats: Permite acceder a análisis que modelizan la relación entre variables dependientes e independientes.

Herramientas: Módulos ya más especializados y relacionados con técnicas estadísticas avanzadas.

Ver: visualización de opciones de trabajo.

Ventana: visualización de ventanas de trabajo.

Ayuda.

Uso de diferentes tipos de ventanas. (Ver figura 29)

Figura 29. Diferentes Ventana Statgraphics. Fuente: Araujo, J; Mata, F. (2009).

Una ventana puede representar muchos objetos. En STATGRAPHICS hay siete tipos distintos de ventanas:

• Ventana de aplicación (Application window).

Aparece cuando entramos por primera vez en el programa. Contiene (considerando la pantalla desde el extremo superior al inferior) la barra de titulo, la barra de menús, la barra de herramientas de aplicación y en la parte inferior, el botón de la ventana de los comentarios (The untitled comment bar), el botón de la ventana de datos (the untitle button), el Statadvisor button y la StatGallery button.

• Ventana de comentarios (Comments window). Aparece cuando se selecciona "untitled comments taskbar button". Sirve para recordar información sobre los datos y se puede usar como un cuaderno de notas (funciona como un editor de textos, se puede copiar, cortar, pergar...).

• Ventana de cálculo (Spreadsheet window). Aparece cuando se selecciona "untitled Data taskbar button". Esta ventana se usa para crear nuevas hojas de cálculo, modificar las ya existentes o modificar datos usando el editor. La usaremos para crear nuestros archivos de datos.

• Ventana de análisis (Analysis window). Aparece después de que hayamos seleccionado un gráfico o un análisis estadístico de la barra de menús. Proporciona la información correspondiente referida al dibujo o una pantalla de "dialogo" para el análisis.

La ventana de análisis contiene tres componentes:

•Analysis Icon Title Bar: muestra el icono para el análisis y su titulo

• Analysis Toolbar: Muestra los botones que se pueden usar para trabajar en la ventana de dialogo, acceder a las opciones graficas y de tablas, salvar los resultados de ciertos análisis y cuando sea posible acceder a opciones gráficas adicionales.

• Text and graphics panes: muestran el texto y los gráficos del análisis en uno o dos paneles.

• Ventana StatGallery (StatGallery window). Aparece cuando seleccionamos el botón "StatGallery icon". Sirve para arreglar y ordenar textos y gráficos que se quieren mostrar o imprimir. Nos proporciona información sobre el análisis.

• Ventana de presentación preliminar (Preview window)

Aparece cuando seleccionamos el submenu "Print Preview" del menú File.

Creación y manejo de ficheros de datos

Creación de un fichero y manejo de las variables contenidas en el.

La manera más cómoda de trabajar con statgraphics es tener los datos guardados en ficheros de datos. Para crear un archivo de datos:

 Seleccionamos en la barra de tareas principal la opción StatWizard, y dentro de la ventana se selecciona Introducir nuevos datos de fuentes externas.(Ver figura 30)

Figura 30. Ventana de Entradas de datos statgraphics. Fuente: Araujo, J; Mata, F. (2009).

2. Seleccionamos con el botón izquierdo del ratón Col_1, el nombre por defecto de la variable.(Ver figura 31)

3. Con el botón de la derecha del mouse seleccionamos dentro del menú que aparece la opción Modify Column y rellenamos los campos que aparecen:

-Se escribe el nombre de la variable (Name).

-Se pueden añadir comentarios sobre la variable (Comment).

-Permite especificar la anchura que se quiere para la columna (Width).

-Se debe definir el tipo de variable:

-Numérico: variables numéricas (tantos decimales como queramos).

- Carácter: variables cualitativas o números tratados como valores cualitativos.
- Enteros.
- -Decimal Fijo: números con una cantidad de decimales prefijada.
- Formula: permite generar variables mediante formulas a partir de otras existentes.

Figura 31.Ventana de Introducción de datos. Fuente: Araujo, J; Mata, F. (2009).

Comparación de varias muestras.

• Seleccionar Comparación de Varias Muestras, como entrada: Múltiple Columnas de Datos. Aceptar. (Ver figura 32)

E STATGRAPHICS Centu								
Archivo Editar Definir Me	dir Analizar	Mejorar Controlar Pro	nósticos SnapStatsII He	erramientas Ver Ventar	a Ayuda			
🛩 🖬 🏢 🙀 🐰 🖻	n 🖷 🗠 🔤	a Q. 🖾 🎛 😫	🗄 🖽 ネ 🗷 🖻 🛛	🛎 💠 🗠 🔺	8 🔳			
Libro de Datos			■ 姫 � � ℅ ₪	? 🗠 Etiqueta:	🕅 Fila:	<i>d</i> 4		
🔷 StatAdvisor	<c:\do< td=""><td>cuments and Setting</td><td></td><td>entos\datos\Libro1.x</td><td></td><td></td><td></td><td></td></c:\do<>	cuments and Setting		entos\datos\Libro1.x				
StatGallery		Parcela1	Col 2	Col 3	Col 4	Col 5	Col 6	
StatReporter		Contenido de	_	_	_	_	_	
Comentarios del StatFolic		Humedad						
	1	31,8687136050821	32,2939262472885	9,72184715095867	23,6503856041131	6,63331883427577	9,5495072735804	
	2	37,4092685650475	34,2098129574411	34,4073094493868	29,5781763071483	9,95772663222169	27,148194271482	
	3	36,4005805515239	24,1146168005731	22,6014512227896	36,2705470223659	11,1086572438163	23,994452149792	
	5							
	6							
	7		Con vara	ción de Varias Muest	ras 🔀			
	8		- Entrada					
	9		 Múltip 	oles Columnas de Datos	Aceptar			
	10		C. Colur	nnas de Códigos y Datos	Cancelar			
	11		C Estas	lísticas Musetrales	Aunda			
	12		- Laide	nsticos muestidies	Ayuua			
	13							
	14							
	15							
	16							
	17							
	18							
	म र म	Libro1 / B / C / D	<u>/E/F/G/H/I/</u>	i/	4		•	
< >	📕 Sin títu	ı 🗗 🗖 🔀 🗞 s	tatAd 🗗 🗖 🔀	🚼 StatGal 🗗 🗖	🔀 🔙 StatRe 🗖			
	A	A	A		A			

Figura 32. Comparación de varias muestras. Fuente propia Araujo, J; Mata, F. (2009).

• A continuación el programa arroja una serie de resultado, de los cuales para la realización de este trabajo de tesis solo se tomaran en cuenta la Representación Gráfica de las medias y su tabla, Además la prueba de Rangos Múltiples, la cual muestra si existe diferencias significativas entre los valores que están siendo Comparados. (Ver figura 33)

Libro de Datos				: 🗮 🖆 🎋 🏛 da. 📣		₩ 🗠 📎 🛦 ½ Etiqueta:	8	1	Fila	49
StatAdvisor				0000 +abc +	· • •	,				
StatGallery	Compara	ción de	Varias Mi	Jestras	1.97.08/					
StatReporter	Tabla de Me	and the second		Error Est.	195,0%					
Comentarios del StatEolic		Casos	Media	(s agrupada)	Limite Inferior	Límite Superior	1			
Jomentarios del StatPolic	Parcela 1	3	35,2263	3,98647	29,3463	41,1064				
Comparación de Varias N	parcela 10	3	23,6193	3,98647	17,7393	29,4994				Medias y 95,0% de Fisher LSD
	Parcela 2	3	30,2063	3,98647	24,3263	36,0864				
	Parcela 3	3	22,2433	3,98647	16,3633	28,1234			50[
	Parcela 4 Parcela 5	3	29,833	3,98047	23,9529	35,7131				
	narcela 6	3	20 2307	3 98647	143506	26 1107			1	
	Parcela 7	3	22,0243	3,98647	16,1443	27,9044			40	·
	parcela 8	3	19,8553	3,98647	13,9753	25,7354			40	
	Parcela 9	3	26,0327	3,98647	20,1526	31,9127			ł	+ T T +
									301	
	El StatAdvis Pruebas de N	or dúltiple l	Rangos	, , ,,	· •• • • · ·				Media	
	El StatAdvis Pruebas de M Método: 95,0	or Múltiple I porcenta	,. Rangos je LSD	, , ,,					20 Media	
	El StatAdviso Pruebas de M Método: 95,0	or Múltiple I porcenta Casos	, Rangos je LSD Media	Grupos Homo	géneos				20 Media	
	El StatAdviso Pruebas de M Método: 95,0 Parcela 5 varmela 8	or Multiple I Dorcenta Casos 3 3	r Rangos le LSD Media 9,23333	Grupos Homo	gíneos				20 Media	
	El StatAdvis Pruebas de M Método: 95,0 Parcela 5 parcela 8 parcela 6	or Múltiple I porcenta Casos 3 3 3	Rangos ie LSD Media 9,23333 19,8553 20,2307	Grupos Homo X XX	géneos				20 20	
	El StatAdvis Pruebas de M Método: 95,0 Parcela 5 parcela 8 parcela 6 Parcela 7	or Multiple I porcenta Casos 3 3 3 3 3 3 3	Rangos e LSD Media 9,23333 19,8553 20,2307 22,0243	Grupos Homo X XX XX XX	géneos				20 20 10	
	El StatAdviss Pruebas de N Método: 95,0 Parcela 5 parcela 8 parcela 6 Parcela 7 Parcela 3	or Multiple I Dorcenta Casos 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	kangos e LSD Media 9,23333 19,8553 20,2307 22,0243 22,2433	Grupos Homo X XX XX XX XX X	géneos				20 20 10	
	El StatAdvis Pruebas de N Método: 95,0 Parcela 5 parcela 5 parcela 6 Parcela 7 Parcela 3 parcela 10	or Múltiple I Casos 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	e LSD Media 9,23333 19,8553 20,2307 22,0243 22,2433 23,6193	Grupos Homo X XX XX XX X X X X X	géneos				20 20 10	
	El StatAdvis Pruebas de M Método: 95,0 Parcela 5 parcela 6 Parcela 7 Parcela 3 parcela 10 Parcela 9	or Múltiple I Casos 3 3 3 3 3 3 3 3 3 3 3 3 3	Rangos e LSD Media 9,23333 19,8553 20,2307 22,0243 22,2433 22,2433 23,6193 26,0327	Grupos Homo X XXX XX XX XX XX XX XX	génaos				20 20 10	
	El StatAdvis Pruebas de M Método: 95,0 Parcela 5 parcela 5 parcela 6 Parcela 7 Parcela 7 Parcela 10 Parcela 9 Parcela 9	or Múltiple I Porcenta Casos 3 3 3 3 3 3 3 3 3 3 3 3 3	kangos e LSD Media 9,23333 19,8553 20,2307 22,0243 22,2433 23,6193 26,0327 29,833	Grupos Homo X XX XX XX XX XX XX XX XX	génuos				20 20 10	
	El StatAdviso Pruebas de M Método: 95,0 Parcela 5 parcela 6 Parcela 7 Parcela 7 Parcela 3 parcela 10 Parcela 9 Parcela 9 Parcela 4 Parcela 4	or Adultiple I porcenta Casos 3 3 3 3 3 3 3 3 3 3 3 3 3	kangos e LSD Modia 9,23333 19,8553 20,2307 22,0243 22,2433 23,6193 26,0327 29,833 30,2063 26,0027	Grupos Homo X XX XX XX XX XX XX XX XX XX XX	gineos	<u>., "</u> ,			20 20 10	1 10 2 3 4 5 6 7 8 9 Parcelas
	El StatAdviso Pruebas de M Método: 95,0 Parcela 5 parcela 5 parcela 6 Parcela 7 Parcela 3 parcela 10 Parcela 4 Parcela 4 Parcela 2 Parcela 1	or Adultiple I porcenta Casos 3 3 3 3 3 3 3 3 3 3 3 3 3	kangos e LSD Modia 9,23333 19,8553 20,2307 22,0243 22,2433 22,243 23,6193 26,0327 29,833 30,2063 35,2263	Grupos Homo X XX XX XX XX XX XX XX XX XX XX XX XX	génaos	<u></u> ,			20 20 10	1 10 2 3 4 5 6 7 8 9 Parcelas

Figura 33. Resultados Statgraphics. Fuente propia Araujo, J; Mata, F. (2009).

CAPITULO III

MARCO METODOLÓGICO

Tipo de investigación

Hernández, R., Fernández, C., Baptista, P. (2003), señalan que la investigación descriptiva tiene como propósito la caracterización e identificación de un hecho, fenómeno, individuo o grupo, con la finalidad de establecer su estructura o comportamiento. Este será el tipo de investigación que se llevará en este estudio donde, se caracterizarán propiedades físicas de suelo.

Diseño de investigación

Según Hernández y otros (2003), la investigación se divide en: experimental y no experimental. La investigación no experimental se refiere a estudios que se realizan sin la manipulación deliberada de variables y en los que sólo se observan los fenómenos en su ambiente natural para después analizarlos. Esta investigación se considera no experimental, ya que se captaran muestras no perturbadas para analizar la permeabilidad, resistencia al corte, límites de consistencia, granulometría, contenido de humedad inicial in situ en suelos de uso agrícola ubicados en el sector Potrerito, Chirgua, Estado Carabobo. Es importante tener en cuenta que, en este tipo de estudios no se construye ninguna situación sino que se observan situaciones ya existentes.

Población

Según Hernández y otros (2003), Puertas y otros (1998), la población o universo, bajo el enfoque cuantitativo, es el conjunto de todos los casos que concuerdan con determinadas especificaciones. En esta investigación, la población se definirá en la siguiente descripción de la muestra

Muestra

Según Hernández (2003), Puertas y otros (1998), la muestra es, en esencia, un subgrupo de la población y se categorizan en dos grandes ramas: las muestras no probabilísticas y las muestras probabilísticas. Las muestras probabilísticas representa un subgrupo de la población en el que todos los elementos de ésta tienen la misma posibilidad de ser elegidos. Esto se logra definiendo las características de la población, el tamaño de la muestra y a través de una selección aleatoria o mecánica de las unidades de análisis. La muestra probabilística puede ser: simple, estratificada o por racimos

Según Hernández (2003); Puertas E., Urbina J., Blank M., Granadillo D., Blanchard M., García J., Vargas P., Chiquito A., (1998) la muestra probabilística por racimos representa un subgrupo en el que las unidades de análisis se encuentran encapsuladas en determinados lugares físicos. Muestrear por racimos implica diferenciar entre la unidad de análisis y la unidad muestral. **La unidad de análisis** indica quienes van a ser medidos, es decir, el sujeto o los sujetos a quienes en última instancia se les aplicarán el instrumento de medición. **La unidad muestral** (en éste tipo de muestra) se refiere al racimo a través del cual se logra el acceso a la unidad de análisis. En ésta investigación las parcelas agrícolas se utilizaran como racimos, es decir, como unidades muéstrales, a partir de las cuales se seleccionaran los sitios de muestreo para caracterización de propiedades físicas de suelos.

Según Hogdson (1987), en prospección de suelos, el término "muestra" se refiere a las pequeñas porciones de muestras de suelo tomadas para representar un horizonte u otra parte del perfil. Este significado no debe confundirse con el uso paralelo de "muestra" para designar un sitio o unidad de suelo seleccionada estadísticamente o con otro criterio, al investigar la distribución de suelos en el campo.

Determinación del tamaño de muestra

Según Hernández (2003), Puertas y otros (1998), el muestreo por racimos supone una selección en dos etapas, ambas con procedimientos probabilísticos.

Primera etapa

En la primera etapa, se seleccionan los racimos, siguiendo los pasos de una muestra probabilística simple o estratificada. En esta etapa, los racimos representan las parcelas agrícolas. Por lo tanto, el objeto será determinar: ¿Cuántas parcelas se necesitarán muestrear de una población total de 13 parcelas agrícolas en el sector Potrerito durante el periodo Húmedo 2008, si se desea que el error sea no mayor de 0,02 con una probabilidad de ocurrencia de 99%?

La determinación del tamaño de la muestra se realizará tomando en cuenta los cálculos para una muestra probabilística simple la cual requiere dos pasos:

1.
$$n' = \frac{S^2}{V^2}$$
 = tamaño provisional de la muestra =

<u>Varianza _ de _ la _ muestra</u> Varizanza _ de _ la _ poblaciòn

2.
$$n = \frac{n!}{1 + \frac{n}{N}}$$

Donde:

N: tamaño de la población de 14 parcelas agrícolas en el sector Potrerito

 \overline{y} : Valor promedio de una variable =1, una parcela agrícola

se: error estándar= 0,02 determinado por los investigadores.

V²: varianza de la población. Su definición (se): cuadrado del error estándar.

s²: varianza de la muestra expresada como la probabilidad de ocurrencia de \overline{y} .

n': tamaño de la muestra sin ajustar.

n: tamaño de muestra.

$$n' = \frac{p(1-p)}{(0.020)^2} = \frac{0.99(1-0.99)}{0,0004} = 24,75$$

$$n = \frac{n'}{1 + \frac{n'}{N}} = \frac{24,75}{1 + \frac{24,75}{14}} = \frac{24,75}{2,77} = 8,94 \approx 9 \, parcelas$$

La respuesta a ésta pregunta busca encontrar la probabilidad de ocurrencia de \overline{y} y que el estimando de \overline{y} se acerque a \overline{Y} , el valor real de la población. Si se establece el error estándar y se fija en 0,02, se sugiere que ésta fluctuación promedio del estimado \overline{y} con respecto a los valores reales de la población \overline{Y} no sea > 0,02, es decir, que de cien casos 98 veces la predicción sea correcta y que el valor de \overline{y} se sitúe en un intervalo de confianza que comprenda el valor de \overline{Y} . (Ver Tabla 8)

Tabla 8. Selección de las parcelas agrícolas.

N (PARCELAS AGRÍCOLAS)	E RROR	FRECUENCI A DE OCURRENCIA DEL ERROR	TAMAÑO DE LA MUESTRA SIN AJUSTAR (N')	N (N° DE PARCELAS)	TOT AL PARCELAS A ESTUDIAR
14	,02	0,99	24,75	8,94	10

Fuente: Araujo, J; Mata, F. (2009).

Por lo tanto se necesitará una muestra de 10 parcelas agrícolas para estimar los valores de la población con una probabilidad de error < 0,02.

Segunda etapa

En la segunda etapa, y dentro de estos racimos (parcelas) se selecciona a los sujetos u objetos que van a medirse, en este caso, los sitios de muestreo. Para ello se hace una selección que asegure que todos los elementos del racimo tienen la misma probabilidad de ser elegidos. Por lo tanto, el objeto será determinar: ¿Cuántos sitios se necesitarán muestrear en las parcelas agrícolas en el sector Potrerito durante el periodo Húmedo 2008, seleccionadas en el paso previo, si se desea que el error sea no mayor de 0,05 con una probabilidad de ocurrencia de 99%?

La determinación del tamaño de la muestra se realizará tomando en cuenta los cálculos para una muestra probabilística simple la cual requiere dos pasos:

1.
$$n' = \frac{S^2}{V^2}$$
 = tamaño provisional de la muestra =

Varianza_de_la_muestra Varizanza_de_la_poblaciòn

$$2. \quad n = \frac{n'}{1 + \frac{n}{N}}$$

Donde, por cada parcela:

N: tamaño de la población de sitios en 14 parcelas agrícolas en el sector Potrerito.

 \overline{y} : Valor promedio de una variable =1, un sitio por parcela

se: error estándar= 0,05, determinado por los investigadores.

V²: varianza de la población. Su definición (se): cuadrado del error estándar.

s²: varianza de la muestra expresada como la probabilidad de ocurrencia de \overline{y} .

n': tamaño de la muestra sin ajustar.

n: tamaño de muestra.

$$n' = \frac{p(1-p)}{(0.050)^2} = \frac{0.99(1-0.99)}{0,0025} = 3.96$$

$$n = \frac{n'}{1 + \frac{n'}{N}} = \frac{3,96}{1 + \frac{3.96}{14}} = 3.09 \approx 3 \text{ sitios}$$

La respuesta a ésta pregunta busca encontrar la probabilidad de ocurrencia de \overline{y} y que el estimando de \overline{y} se acerque a \overline{Y} , el valor real de la población. Si se establece el error estándar y se fija en 0,05, se sugiere que ésta fluctuación promedio del estimado \overline{y} con respecto a los valores reales de la población \overline{Y} no sea > 0,05 es decir, que de cien casos 98 veces la predicción sea correcta y que el valor de \overline{y} se sitúe en un intervalo de confianza que comprenda el valor de \overline{Y} . (Ver Tabla 3).

Se tiene igualmente un esquema de la selección de las unidades muéstrales y unidades de análisis. (Ver

Parcela	N(intersecciones cuadricula)	Err or	Frecuencia de ocurrencia del error	Tamaño de la muestra sin ajustar (n')	n (n° de muestras)	Puntos tomados
1	13	0,05	0,99	3,96	3,0	3
2	13	0,05	0,99	3,96	3,0	3
3	5	0,05	0,99	3,96	2,2	3
4	4	0,05	0,99	3,96	2,0	3
5	3	0,05	0,99	3,96	1,7	2
6	9	0,05	0,99	3,96	2,8	3
7	12	0,05	0,99	3,96	3,0	4
8	12	0,05	0,99	3,96	3,0	3
9	5	0,05	0,99	3,96	2,2	3
10	9	0,05	0,99	3,96	2,8	3
					Total	30

figura 34)

Tabla 9. Selección de los sitios de muestreo. Fuente: Araujo, J; Mata, F. (2009).

Figura 34. Muestreo probabilístico por racimos. Sector Potrerito Cuenca del río Chirgua. Estado Carabobo.

Fuente: Araujo, J; Mata, F. (2009).

Técnicas de recolección de datos

La recolección de datos de ésta investigación se llevó a cabo tomando en consideración los procedimientos y criterios que se definen a continuación:

• Procedimientos de selección de la muestra en el enfoque

cuantitativo

- Criterios de selección de los sitios de muestreo de suelos
- Criterios para la selección de la escala del levantamiento de suelos
- Criterios para la selección de la profundidad del muestreo
- Criterios para la selección de las propiedades físicas de suelos
- Criterios para garantizar calidad de la muestras

Procedimientos de selección de la muestra en el enfoque cuantitativo.

Según Hernández (2003), Puertas y otros (1998), el tipo de muestra probabilística depende de dos cosas: el tamaño de la muestra y el procedimiento de selección. Las unidades de análisis o los elementos muéstrales se eligen siempre aleatoriamente para asegurar que cada elemento tenga la misma probabilidad de ser elegido

El procedimiento elegido es el de la tómbola, el cual consiste en numerar todos los elementos muéstrales del 1 al n. Hacer fichas, una por cada elemento, revolverlas en una caja e ir sacando fichas, según el tamaño de la muestra. Los números elegidos al azar conformaran la muestra. (Ver figura 35)

Figura 35. Puntos de Muestreo probabilístico por cuadriculas. Sector Potrerito Cuenca del río Chirgua. Estado Carabobo. Fuente: Araujo, J; Mata, F. (2009). Criterios de selección de los sitios de muestreo de suelos

Según Hodgson (1987), el lugar escogido debe ser localizado y registrado con precisión, de manera que siguientes investigadores puedan redescubrirlo para nuevos estudios. El lugar puede señalarse en un mapa con el objeto de que quede registrado permanentemente y sea archivado con la dirección del perfil edáfico. Los mapas modernos poseen una malla de referencia sobre impuesta que permite un registro preciso de la posición de un lugar. La malla viene representada por un conjunto de líneas paralelas y en ángulo recto al meridiano central de la proyección, para formar un conjunto de cuadrículas

Según Pla Sentis (1977), desde el punto de vista de caracterización física se requiere un muestreo o selección de individuos representativos dentro de la población "suelo", para realizar en ellos una evaluación de las características y propiedades de interés.

El número de muestras y la selección de los sitios de muestreo dependerá en cada caso del propósito perseguido, de la variabilidad de la población y de la segregación previa de los individuos suelo en grupos con mayor o menor grado de uniformidad.

Cuando existen estudios previos de los suelos del área a caracterizar, y con ello un conocimiento preliminar de la variabilidad de sus características tanto en sentido horizontal como vertical, se pueden seleccionar sitios "típicos" para el muestreo, reduciendo con ello el número de muestras y de trabajo. Sin embargo, con ello no se puede lograr un conocimiento de la variabilidad de las características o propiedades evaluadas. Para lograr esto es necesario seleccionar al azar un determinado número de sitios de muestreo, para que sea más detallada la segregación previa de los individuos del suelo en unidades cartográficas.

Como guía preliminar, Pla Sentis (1977) recomienda lo siguiente:

a. Muestreo en un sitio "típico", cuando se posee una segregación previa al menos al nivel de la serie, y el propósito del estudio es formar una idea general de los problemas de manejo y conservación de suelos aplicable a gran parte de los suelos incluidos en la unidad estudiada. (Ver Figura 36.)

b. Muestreo en sitios seleccionados al azar, cuando se desea caracterizar en un área determinada, y se requiere conocer la variabilidad de las características o propiedades evaluadas dentro de dicha área. Si las observaciones directas preliminares indican una gran uniformidad, el número de sitios seleccionados al azar puede reducirse a tres cada 10 ha., mientras que en el otro extremo una gran variabilidad puede exigir incrementar el número de sitios a uno por ha. (Ver Figura 36).

c. Muestreo sistemático, seleccionando sitios de muestreo cada cierta distancia, siguiendo un diseño regular preestablecido, cuando se desea hacer un mapeo de las características o propiedades evaluadas con fines de segregar áreas para diferentes usos agrícolas o diferentes prácticas de manejo. La distancia entre sitios de muestreo también dependerá del grado de variación observado previamente, pudiéndose en general tomar 100 m en caso de mucha variabilidad, y 200 m en caso de gran uniformidad. (Ver Figura 36).

En cualquier caso, la decisión final debe siempre tomar en cuenta que lo que se persigue es obtener la información más precisa posible al menor costo. En esta investigación, no se disponen de estudios previos del área a caracterizar, por lo tanto no existe una segregación previa de los individuos de suelo en unidades cartográficas. Sin embargo este estudio constituye un paso preliminar que contribuirá a generar una base de datos que permitirá describir dichas unidades taxonómicas y/o cartográficas. El tipo de muestreo seleccionado corresponde al identificado como "muestreo al azar". (Ver figura 36).

Figura 36. Esquemas ilustrativos de los diferentes sistemas de muestreos de suelos. Fuente: Pla Sentis (1977).

Criterios para la selección de la escala del levantamiento de suelos

Según USDA, (1993) los levantamientos de suelos se realizan para examinar, describir, y clasificar suelos en campo y delinear sus áreas sobre mapas. Algunos levantamientos se realizan para servir a usuarios quienes requieren precisar información acerca de los recursos de suelo de áreas con pocas hectáreas o pequeñas en tamaño. Otros son realizados por usuarios quienes requieren una perspectiva amplia de la heterogeneidad, distintiva, en áreas con miles de hectáreas

Los elementos de un levantamiento de suelos se pueden ajustar para proporcionar un producto más útil para propósitos específicos. Diferentes intensidades del estudio de campo, diferentes grados de detalle en el mapeo, diferentes fases o niveles de abstracción y designación de las unidades de mapa producen un amplio rango de levantamientos. Los ajustes en la forma de estos elementos forman las bases para diferenciar cinco órdenes en el levantamiento de suelos. (Ver Tabla 10).

En esta investigación el nivel de datos recolectado corresponde al primer orden, lo cual se logra mediante la construcción de una cuadrícula de una (1) hectárea, así como se emplearan ortofotomapas. (Ver Anexo 1) que permitirán generar mapas de escala menor a 1:5.000 del sector estudiado.
 Tabla 10. Criterios para categorizar tipos de levantamientos de suelo

Nivel de datos requerido	Procedimientos de campo	tamaño	Componentes típicos	Clases de	Escalas apropiadas
		(hectáreas)	de las unidades de mapa ²	unicacies de mapa	para mapeoen campo y
1er orden Muy inten sivo (empleado en, estudios experimentales o sitios de construcción individual)	Los suelos en cada defineación se identifican mediante tran sectas o tran sversas. Los fimites en los suelos se observana través de sus longitu des. Datos de sensores remotos se utilizan como un asistente en la delineación de los fimites	1 o menos	Fases de las series del suelo, áreas misceláneas	Mayormente con sociaciones , algunas áreas misceláneas, complejas	1:15,840 o mayor
2d'o orc'e n- htensivo (empleado en, agricultura general, planificación urbana)	Los suelos en cada delineación se identifican mediante observaciones de campo y datos de sensores remotos. Los limites se verifican en intervalos e spaciados estrechamente	0.6a4 :	Fases de series de suelo, áreas miscetáneas, Algunas identificaciones en un nivel por encima de las series	Consociacione s, complejos; pocas asociaciones y grupos no diferenciados	1:12,000 a 1:31,680
3er ordien - Betensivo (empleado en planificación urbana)	Limites de suelos levantados mediante observación e interpretación de sensores remotos. Límites de suelo son verificados mediante áreas representativas tran sversales y transectas.	1.6 a 16	Fases de series de suelo o taxa por encima de la series; o áreas misceláneas	Mayormente asociaciones o complejos, algunas asociaciones y grupos no diferenciados	1:20,000 a1:63,360
4to orden - Btensivo (empleado en; información general del suelo para ampliar decretos sobre uso potencial de la tierra y manejo de la tierra)	Límites de suelos levantados mediante observación e interpretación de sensores remotos. Límites de suelo son verificados mediante áreas representativas transversales y algunas etransectas.	16 a 252	Fases de series de suelo o taxa por encima de la series; o área s misceláneas	Mayormente aso ciaciones; algunos complejos, con sociaciones y grupos no diferenciados	1:63,360 a 1:250,000
5to ordien- Muy extensivo (empleado en; planificación regional, selección de áreas para estudios más intensivos)	Patrones del suelo y composición de unidades de mapas se determinan mediante ideas representativas de mapeo y áreas a través de interpretación de datos de sensores remotos. Suelos verificados mediante investigación en sitio ocasional o transversas.	252 a 4,000	Fases de niveles por encima de las series, áreas misceláneas	Asociaciones, algunas con sociaciones y grupos no diferenciados	1:250,000 a 1:1,000,000 o más pequeñas

¹Esta es la defineación más pequeña permisible para mapas de suelo legibles (ver Tabla 2). En la práctica, las defineaciones de tamaño mínimo son generalmente mayores que el tamaño mínimo mostrado. ²Asíable, teda slave de unidades de graza (separaterizados, escribeiros, acesiasiones de diferenciados) que se

²Aplicable, toda clase de unidades de mapa, (consociaciones, complejos, asociaciones no diferenciadas) que se pueden utilizar en cualquier orden de levantamiento

Nota. Tomado de USDA, 1993.
Criterios para la selección de la profundidad del muestreo

Según Pla Sentis (1977), la profundidad de muestreo depende también del propósito perseguido, pero en general se puede señalar que se requiere:

a. Muestras de 0-30 cm de profundidad cuando se quieren evaluar aquellas características o propiedades que pueden ser modificadas o influidas por el clima y prácticas de laboreo

 Muestreo de 0-30 cm y de 30-60 cm cuando se evalúan características
 o propiedades que influyen sobre el desarrollo y actividad radicular, así como sobre el almacenamiento de agua en el suelo

 c. Muestras por debajo de los 60 cm, cuando se evalúan características o propiedades relacionadas con el drenaje interno del suelo, o con el desarrollo radicular de plantas con raíces muy profundas

La variabilidad es generalmente mucho menor a medida que se profundiza, y por ello normalmente el número de muestras requerido de 30-60 cm de profundidad es la mitad del número de 0-30 cm. Para propósitos de manejo y conservación de suelos frente a la acción agresiva del clima tropical, interesa fundamentalmente el suelo de 0-30 cm de profundidad.

En esta investigación se tomaran muestras en dos estratos, diferenciados de 0-20 cm y 20-40 cm, motivado a que esta corresponde a la profundidad a la cual realiza operaciones el agricultor, mediante actividades como el arado. Así como, para estudio del almacenamiento de agua en el suelo. Con el propósito de considerar la incidencia de las propiedades físicas del suelo en estos dos estratos sobre la erosión.

Criterios para la selección de las propiedades físicas de suelos

Según USDA, (1993), la clasificación en series es la categorización más homogénea en la taxonomía usada en los Estados Unidos. Tal como en una clase, una serie es un grupo de suelos que tienen horizontes similares en arreglo y características diferenciadas. Los suelos de una serie tienen un rango relativamente estrecho en el conjunto de propiedades.

Algunas de las características comúnmente usadas para diferenciar las series son la clase, espesor, y arreglo de los horizontes y sus estructuras, color, textura, reacción, consistencia, contenido de carbonatos y otras sales, contenido de humus, contenido de fragmentos de roca, y composición mineralógica

En esta investigación se construirán nuevas series, las cuales difieren de las comunes consideradas en USDA, 1993, ya que a cada sitio de muestreo o unidad de suelo se le determinaran características físicas, tales como; textura y propiedades como: permeabilidad, resistencia al corte y límites de consistencia. La selección de las propiedades se basa en las sugerencias de US Army Corps of Engineers (2001), que se mencionan abajo para abordar un estudio de estabilidad de pendientes. En otras investigaciones del Departamento de Ingeniería Ambiental de la Universidad de Carabobo, realizadas en el mismo período de estudio, se está investigando otra propiedad física conocida como infiltración, la cual se agregará a la conformación de las series mencionadas antes

Según US Army Corps of Engineers (2001), el principal objetivo de una investigación subsuperficial es definir las características de ingeniería geotécnica, las cuales involucran permeabilidad, compresibilidad, y esfuerzo cortante de cada estrato rocoso o suelo identificable dentro de una extensión aérea limitada y profundidad, dependiendo del tamaño del estudio propuesto. A continuación se muestra una tabla la cual proporciona una lista parcial de los elementos geológicos especiales y condiciones consideradas en estudios de oficina y observaciones de campo, donde se evidencia la aplicación del esfuerzo cortante como característica principal. (Ver tabla 11)

ELEMENTO GEOLÓGICO O CONDICIÓN	INFLUENCIA SOBRE EL PROYECTO	ESTUDIOS DE OFICINA	OBSERVACIO NES DE CAMPO
Deslizamientos	Estabilidad de	Determinar el	Estimar
de tierra	pendientes naturales y	esfuerzo cortante en la	pendiente del terreno
	excavadas	falla	antes y después del
			levantamiento (ángulo
			de fricción residual)
Resistencia a la	Se determina la	Ubicación de la	Observación de
erosión	necesidad de	conexión de los	la estabilidad de
	protección de	estratos erosivos a lo	canales y grados de
	pendientes de canales	largo de los canales de	erosión y estabilidad
	totales o parciales	drenaje	de márgenes
Esfuerzo	Suministra	Ubicación de	Estimar ángulos
cortante in situ a partir	información de la	áreas de deslizamiento	de pendientes y
de pendientes naturales	estabilidad de	natural	elevaciones,
	pendientes excavadas o		especialmente en zonas
	pendientes naturales		de ríos donde ocurre la
	alrededor de áreas de		erosión
	reserva		

Tabla 11. Elementos Geológicos Especiales y Condiciones Consideradas enEstudios de Oficina y Observaciones de Campo.

Nota. Tomado de US Army Corps of Engineers, (2001)

En esta investigación se ha considerado estudiar es la resistencia al corte de suelos, la cual es la propiedad conveniente para problemas de estabilidad de taludes,

lo que permite considerar a la erosión hídrica en parcelas agrícolas como un problema incluidos dentro de los abordados por la ingeniería geotécnica. Así como, se ha considerado la permeabilidad para determinar la velocidad con la que circula el agua a través de una muestra de suelo en una condición de humedad saturada. Tanto la resistencia al corte como la permeabilidad son propiedades que influyen en el desprendimiento del suelo.

US Army Corps of Engineers (2001), plantea que los objetivos de una investigación de campo, se deberían subdividir en cinco fases: (1) estudios preliminares, (2) investigación subsuperficial de campo, (3) pruebas de laboratorio, (4) reportes y (5) propuestas. Los estudios preliminares, incluyen la revisión de la literatura publicada, mapas, y fotografías, y reconocimientos de campo. La investigación subsuperficial se puede llevar a cabo mediante el uso de datos obtenidos mediante técnicas de sensores remotos y observaciones directas

La observación directa de las condiciones subsuperficiales permite realizar examen de las formaciones a través de excavaciones accesibles, mediante; ductos, túneles, fosas de prueba, trincheras, o barrenos para obtener cortes de un perfil de suelo. Las fosas de prueba y trincheras probablemente ofrezcan los mejores métodos para observar las condiciones in situ y la obtención de muestras no perturbadas de alta calidad

Criterios para garantizar calidad de la muestras

En US Army Corps of Engineers (2001), se hace referencia a Hvorslev (1949), quien definió la calidad de las muestras como representativas o no representativas. Definió las muestras no representativas como mezclas de suelo y rocas de diferentes capas. Sugirió que las muestras no representativas normalmente no se utilizan en investigaciones de campo y destacó que errores serios de interpretación del perfil del suelo podrían obtenerse debido a la mezcla de cortes de suelo. Hvorslev definió las muestras representativas como aquellos materiales que no han sido alterados químicamente o contaminados con partículas de otras capas.

Las muestras representativas se pueden obtener por una variedad de técnicas, dependiendo de la calidad de la muestra deseada. Las muestras perturbadas se pueden obtener a través de taladros, cucharas de muestreo, y tubos de muestreo de pared y espesor delgado. Las muestras perturbadas se utilizan principalmente para contenido de humedad, límites de Atterberg, gravedad específica, análisis de tamizado o distribución del tamaño del grano y características de compactación. Las muestras no perturbadas de alta calidad se pueden obtener mediante muestras en bloques cortados en forma manual mediante fosas de prueba y trincheras. Las muestras no perturbadas son útiles para pruebas de esfuerzo, compresibilidad y permeabilidad.

Se debe Seleccionar del diámetro apropiado de muestras, los cuales son compatibles con las pruebas de laboratorio requeridas sobre especímenes no perturbados. (Ver tabla 12)

TIPO	PRUEBAS	DIÁMETRO		PESO SECO MÍNIMO			
DE		MÍNIMO DE LAS					
MUESTRAS		MUEST	RAS				
		cm	in	kg	Lb		
No	Peso unitario	7.6	3.0	-	-		
perturbadas	Permeabilidad	7.6	3.0	-	-		
	Consolidación	12.7	5.0	-	-		
	Compresión	12.7	5.0	-	-		
	Triaxial						
	Compresión no	7.6	3.0	-	-		
	confinada						
	Corte directo	12.7	5.0	0.2	0.5		
Pertur	Contenido de			0.2	0.5		
badas	humedad						
	Límites de			0.2	0.5		
	Atterberg						
	Gravedad			0.1	0.2		
	Específica						
	Análisis de tamaño			0.2	0.5		
	del grano						
Recons	Compactación			13.5	30		
tituido	estándar						
	Permeabilidad			0.9	2.0		
	Consolidación			0.9	2.0		
	10.2 cm diámetro						
	Corte directo			0.9	2.0		
¹ Todas l	as partículas pasan el tamiz	z estándar Nº 4 (3.8 mm)				
² Especím	nenes para prueba triaxial	que son prepara	ados mediante	corte de una se	cción pequeña		
de una muestra de 12.7 cm de diámetro en cuatro cuadrantes							

Tabla 12. Diámetro de Muestras Mínimo o Peso Seco para Pruebas de Laboratorio Seleccionadas.

Nota. Tomado de US Army Corps of Engineers, (2001)

En esta investigación se utiliza un diámetro de 4 pulgadas para las muestras de permeabilidad. Las muestras para los ensayos de corte directo serán captadas de acuerdo con el tomamuestra de la máquina de ensayo. Las muestras no perturbadas serán captadas de cada estrato en cilindros de 4 pulgadas.

En el siguiente cuadro se resumen los ensayos realizados en el laboratorio de suelos a las muestras obtenidas en campo según la norma ASTM. (Ver tabla 13)

ENSAYO	CÓDIGO DE LA
	NOMA
Granulometría por vía	ASTM D422
Húmeda	
Granulometría por	ASTM D 3080
hidrómetro	
Gravedad Específica	ASTM D854-58
Limites de Consistencia	ASTM D 423-D424
Permeabilidad	ASTM D2434
Corte Directo sin Drenaje	ASTM D3080-04

Tabla 13. Ensayos Realizados en el Laboratorio de Suelos. Fuente: Araujo, J;Mata, F. (2009).

Una vez obtenidos todos los resultados de las propiedades físicas del suelo a través de los diferentes ensayos realizados en el laboratorio, éstos son llevados al programa de representación geográfica (ARCGIS), el cual nos dará los resultados por parcela de cada una de las características del suelo. A continuación se dará una explicación sobre el uso del programa.

Luego de realizado los mapas de representación geográficas de las propiedades físicas del suelo, a través del programa ARCGIS, se utiliza otra herramienta de programación para comparar los resultados estadísticamente llamada STATGRAPHICS el cual destaca especialmente por sus capacidades para la representación gráfica de todo tipo de estadísticas y el desarrollo de experimentos, previsiones y simulaciones en función del comportamiento de los valores. En definitiva, Statgraphics es una completa herramienta para el estudio, análisis y aprendizaje de cualquier rama de la Estadística.

Etapas de la investigación

Fase I: Realización de pruebas de campo, captación de muestras y ensayos de laboratorio

OBJETIVO 1: Determinar relaciones de fases y tamaño de partículas realizando ensayos de granulometría por tamizado, hidrómetro y ensayos de límites de consistencia.

Para dar respuesta a este objetivo se ejecutaron las siguientes actividades:

• Se precisó la población y muestra, para poder determinar la cantidad y ubicación de las parcelas a estudiar y las muestras a seleccionar. Para ello se utilizó la fórmula estadística de la varianza, como se ha descrito al principio de éste Capítulo.

• Una vez captadas las muestras en campo fueron llevadas al laboratorio de suelos de la UC para realizar los ensayos a fin de determinar las propiedades granulométricas y de plasticidad, y así concluir sobre el tamaño de las partículas de las mismas. Las métodos empleados para ejecutar los ensayos son las de los métodos ASTM y se han descrito en el Capítulo II.

• Luego de obtener los resultados de los ensayos de las muestras analizadas en laboratorio, se realizó el procesamiento estadístico de estos datos mediante la aplicación del programa Statgraphics Centurion versión XV, a fin de obtener los valores medios y comparación de rangos múltiples a un nivel de confianza del 95%.

OBJETIVO 2: Obtener propiedades físicas del suelo mediante ensayos de permeabilidad, resistencia al corte.

Para dar respuesta a este objetivo se aplicaron los pasos descritos en el objetivo N° 1.

Fase II: Representación de las propiedades físicas de cada una de las muestras tomadas en campo

En esta fase se le dio respuesta al objetivo Nº 3

OBJETIVO 3: Representar las propiedades físicas del suelo mediante herramientas contenidas en software de Sistemas de Información geográfico (SIG) en la cuenca del Río Chirgua- Sector Potrerito, Municipio Bejuma- Estado Carabobo.

Para dar respuesta a este objetivo se ejecutaron las siguientes actividades:

• Se realizaron todos los ensayos y la obtención de los resultados de los de las muestras tomadas en campo.

• Luego de obtenidos todos los resultados, éstos son llevados a la herramienta del ARCGIS, software que representa geográficamente las propiedades físicas del suelo, mediante diagramas de colores repartidos en cada una de las parcelas muestreadas, y más específicamente en cada uno de los puntos tomados en campo. La explicación del uso de éste programa, está detallado en su totalidad en el Capítulo II.

CAPÍTULO IV

ANÁLISIS E INTERPRETACIÓN DE RESULTADOS DEL LABORATORIO.

En este Capítulo se dará respuesta a los objetivos planteados en la investigación y se hará un análisis estadístico mediante la aplicación del programa STATGRAPHICS CENTURION XV, el cual para esta investigación será utilizado para la comparación de rangos múltiples con un 95% de confianza de los valores obtenido en los puntos de muestreo de cada parcela, se definirá cuantos grupos existen para cada parámetro y

entre cuales parcelas existen valores significativo en los resultados de los ensayos, así como también se representara gráficamente los valores de media de los parámetros del suelo.

Objetivo Nº 1. Determinar relaciones de fases y tamaño de partículas realizando ensayos de granulometría por tamizado, hidrómetro y ensayos de límites de consistencia.

Los resultados de la caracterización que se describirá a continuación incluye los siguientes aspectos; ubicación de la zona de estudio, usos de la tierra, puntos de muestreo, granulometría, límites de consistencia y tipo de suelo.

Características de la Zona de estudio

La zona de estudio se encuentra ubicada en el Estado Carabobo, Municipio Bejuma, Parroquia Simón Bolívar, Sector Potrerito. La ubicación de la zona se puede apreciar en el Anexo I. Los límites de la zona son:

Norte: Con los Municipios Juan José Mora y Puerto Cabello.

Sur: Con los Municipios Libertador y Bejuma.

Este: Con el Municipio Naguanagua.

Oeste: Con los Municipios Bejuma y Montalbán

El Sector Potrerito se encuentra entre las siguientes coordenadas geográficas aproximadas:

Por el Norte entre las coordenadas: 10º 13' 00" y 10º 13'60"

Por el Oeste entre las coordenadas: 68º 11' 40" y 68º 11' 00"

El sector tiene un área aproximada de 1.625.800,00 m2 (162,58 ha). El área agrícola representa 77,78%, comercial 5,56%, residencial 16,66 lo cual se puede apreciar en el Mapa de Usos de la Tierra. (Ver Anexo 2).

Las muestras ensayadas en el laboratorio fueron recolectadas en la cuenca del río Chirgua- Sector Potrerito Municipio Bejuma- Estado Carabobo; El sector se estudió a estratos de 0-30 cm, tomando en consideración que la actividad predominante en la zona que es la agricultura, y de esta manera se realizaron los estudios en la capa superficial del suelo que se ve afectada producto de la erosión, las muestras para dichos ensayos es alterada. Los resultados generales del muestreo se presentan en la Tabla.

Ptos	х	Y	%W	% ARENA	% ARCILLA	% LIMOS	Gs	е	n	K_ mm/h	LL	LP	IP	Cortante max	С	ф	Tipo de suelo	Simb.	D50 (mm)
1	588656.7308	1131159.307	9.33	48.65	1.35	50.00	2.63	0.25	0.20	2.76	34.2	25.9	8.3	0,379	0,083	29	LIMO ORGANICO	OL	0.074
2	588830.064	1131193.529	9.47	41.48	3.42	55.10	2.64	0.25	0.20	3.50	36.8	27	9.8	0,376	0,060	31	LIMO ORGANICO	OL	0.074
3	589149.5648	1131175.905	5.13	42.59	1.35	56.06	2.63	0.13	0.12	1.31	44.2	33.4	10.8	0,315	0,022	28	LIMO ORGANICO	OL	0.074
4	588758.481	1130622.039	11.45	47.13	5.08	47.79	2.47	0.28	0.22	3.04	33.4	25.4	8	0,414	0,089	31	LIMO ORGANICO	OL	0.074
5	588931.9096	1130619.403	6.51	42.10	4.46	53.44	2.51	0.16	0.14	1.65	37.7	27	10.7	0,385	0,080	29	LIMO ORGANICO	OL	0.074
6	589254.5746	1130555.714	6.80	40.84	9.65	49.51	2.62	0.18	0.15	4.14	45.1	29.9	15.2	0.337	0.027	30	LIMO ORGANICO	OL	0.074
7	589017.8956	1130303.249	4.99	33.06	1.35	65.59	2.62	0.13	0.12	3.23	48.5	31.5	17	0.342	0.039	29	LIMO ORGANICO	OL	0.074
8	588968.8136	1130462.847	8.17	44.09	3.73	52.18	2.6	0.21	0.18	3.18	42.7	35.9	6.8	0.359	0.049	30	LIMO ORGANICO	OL	0.074
9	588604.2236	1130259.208	10.04	48.68	1.34	49.98	2.64	0.26	0.21	2.02	46.6	40.4	6.2	0,407	0,077	31	LIMO ORGANICO	OL	0.074
10	588659.8204	1129927.619	3.69	32.80	6.11	61.09	2.49	0.09	0.08	3.18	42.4	28.4	14	0.379	0.088	28	LIMO ORGANICO	OL	0.074
11	588977.0009	1129627.403	5.05	43.05	3.42	53.53	2.57	0.13	0.11	3.56	36.5	30.1	6.4	0.347	0.037	30	LIMO ORGANICO	OL	0.074
12	588669.4332	1129734.135	9.29	42.46	4.77	52.77	2.47	0.23	0.19	3.47	39	29.7	9.3	0.386	0.084	29	LIMO ORGANICO	OL	0.074
13	588806.2707	1129765.194	2.09	46.85	4.46	48.69	2.59	0.05	0.05	2.47	48.1	34.2	13.9	0.338	0.004	32	LIMO ORGANICO	OL	0.074
14	588700.3901	1129522.275	8.11	59.10	4.04	36.86	2.69	0.22	0.18	36.36	27.5	24.8	2.7	0,102	0,002	30	limos inorganicos arenas finas	ML	0.149
15	588435.4644	1129610.687	4.82	39.82	2.38	57.80	2.49	0.12	0.11	3.16	36.4	25.8	10.6	0.372	0.062	30	LIMO ORGANICO	OL	0.074
16	588447.6956	1130802.482	5.31	46.68	2.38	50.94	2.49	0.13	0.12	3.31	42	32	10	0,332	0,030	29	LIMO ORGANICO	OL	0.074
17	588325.4108	1129819.278	2.24	46.29	5.49	48.22	2.5	0.06	0.05	0.45	46.8	30.1	16.7	0,363	0,037	31	LIMO ORGANICO	OL	0.074
18	588446.6207	1130016.16	6.46	44.34	3.42	52.24	2.49	0.16	0.14	2.94	36.7	29.2	7.5	0.364	0.073	28	LIMO ORGANICO	OL	0.074
19	588649.3296	1130471.259	5.11	50.52	1.35	48.13	2.67	0.14	0.12	21.13	14.8	12.5	2.3	0,123	0,010	30	limos inorganicos arenas finas	ML	0.149
20	588475.9312	1130461.61	6.56	46.68	4.15	49.17	2.51	0.16	0.14	4.32	36.5	28.1	8.4	0.36	0.05	30	LIMO ORGANICO	OL	0.074
21	588560.5897	1130673.759	6.29	37.84	5.60	56.56	2.57	0.16	0.14	1.23	40.9	33.1	7.8	0.356	0.053	29	LIMO ORGANICO	OL	0.074
22	588471.5661	1130989.907	5.81	44.38	5.80	49.82	2.62	0.15	0.13	3.37	32.9	26.9	6	0.332	0.022	30	LIMO ORGANICO	OL	0.074
23	588647.7731	1131091.71	10.40	45.51	7.57	46.92	2.44	0.25	0.20	3.55	38.5	28.5	10	0,362	0,036	31	LIMO ORGANICO	OL	0.074
24	589311.6132	1130859.943	4.85	42.83	1.35	55.82	2.57	0.12	0.11	3.37	42.4	34.5	7.9	0.321	0.032	29	LIMO ORGANICO	OL	0.074
25	589101.56	1130908.558	5.33	44.57	5.80	49.63	2.51	0.13	0.12	0.40	42.7	24.8	17.9	0.377	0.067	30	LIMO ORGANICO	OL	0.074
26	588809.6936	1130824.891	2.25	43.45	4.46	52.09	2.61	0.06	0.06	4.07	42.9	31.3	11.6	0.336	0.002	32	LIMO ORGANICO	OL	0.074
27	588706.096	1130886.062	8.29	63.04	5.50	31.46	2.65	0.22	0.18	16.42	25.3	23.1	2.2	0,123	0,009	30	limos inorganicos arenas finas	ML	0.149
28	588830.5815	1130987.736	16.61	43.55	5.49	50.96	2.64	0.44	0.30	3.92	41.4	34.7	6.7	0.355	0.065	28	LIMO ORGANICO	OL	0.074
29	588328.952	1129619.635	5.71	40.37	3.42	56.21	2.52	0.14	0.13	2.04	38.5	28.9	9.6	0.357	0.047	30	LIMO ORGANICO	OL	0.074
20	599315 00/0	1121152 21	7 / 9	44.04	2.38	52.69	2.50	0.10	0.16	2 02	20.8	20	10.8	0.384	0.059	21	LIMO ORGANICO		0.074

Tabla14. Tabla de Resultados de Ensayos Realizados en el Laboratorio

El muestreo se llevo a cabo según el cronograma de actividades en campo que se indica en la Tabla 15.

Semana	Fecha	Actividad
1	21/11/2008	Muestreo
1	24/11/2008	Ensayos de Ptos.
2	28/11/2008	Muestreo
Z	1/12/2008	Ensayos de Ptos
2	5/12/2008	Muestreo
3	8/12/2008	Ensayos de Ptos
4	12/12/2008	Muestreo
4	15/12/2008	Ensayos de Ptos
5	19/12/2008	Muestreo
5	22/12/2008	Ensayos de Ptos
6	16/01/2009	Muestreo
0	19/01/2009	Ensayos de Ptos
7	23/01/2009	Muestreo
1	26/01/2009	Ensayos de Ptos
Q	30/01/2009	Muestreo
0	02/02/2009	Ensayos de Ptos
0	06/02/2009	Muestreo
7	09/02/2009	Ensayos de Ptos
10	13/02/2009	Muestreo
10	16/02/2009	Ensayos de Ptos
11	20/02/2009	Muestreo
11	23/02/2009	Ensayos de Ptos
12	07/03/2009	Muestreo
12	09/03/2009	Ensayos de Ptos

Tabla 15. Cronograma de Actividades

Fuente: Araujo J, Mata F (2009)

En el laboratorio de suelos de la Universidad de Carabobo fueron procesadas todas las muestras obtenidas en campo, una vez culminado éste proceso se tabularon los resultados que fueron cargados a la base de datos del software Arcgis versión 9.2, donde se hizo uso de una imagen raster hoja 6546 I SO (Ver Anexo III), que fue suministrada por la Corporación de Desarrollo de la Región Central (CORPOCENTRO) del Estado Carabobo, la cual permitió la caracterización espacial de las propiedades físicas del suelo, logrando tener mapas georeferenciados que permitirán visualizar de manera didáctica los resultados de éste trabajo de grado.

El sistema de clasificación de suelo utilizado es el Sistema Unificado de Clasificación de suelos (SUCS), el cual se deriva de un sistema desarrollado por el doctor A. Casagrande para agrupar suelos de manera rápida y práctica. La presencia de suelos netamente agrícolas y el tamaño de las partículas del suelo condujeron a trabajar con este método de clasificación, obteniéndose así las propiedades del suelo con las cuales se debe garantizar la estabilidad de taludes y evitar los problemas de erosión.

En el mapa de uso de la tierra (ver Anexo III) se puede observar que el 64,71% del área del sector lo conforman parcelas de uso agrícola un 5,88% es de uso avícola, 5,88% es de uso residencial, 5,88% de uso ganadero, 5,88% de uso industrial y 11,76% de uso sin clasificar.

La distribución del Sector Potrerito se encuentra referenciada cartográficamente en el Anexo III. Este anexo incluye la distribución de los puntos de muestreo sobre las parcelas agrícolas seleccionas para el estudio.

Para lograr obtener los resultados de la granulometría por Hidrómetro para las partículas de suelos más finas que pasan por el tamiz N° 200, se debió realizar previamente los ensayos de gravedad especifica dado a que dichos valores debían ser utilizado, y se obtuvieron gravedades específicas entre (2,44-2,52), (2.53-2.61) y (2.62-2.69) para un estrato de 10 cm. (Ver Anexo XV).

Una vez realizado los ensayos granulométricos tanto por tamizado como por hidrómetro se determinó que la distribución granulométrica está formada por limos, arcillas y arena (Ver Anexo IV). La presencia de limos en el sector fue de aproximadamente entre 31, 46 y 57,80% (Ver Anexo VI), la arcilla alrededor del 1,35 y 9,65 % (Ver Anexo VII) y las arenas 39,82 y 63,04 %, (Ver Anexo V).

Las parcelas granulométricamente presentan más de un 90% de partículas de grano fino, por tanto se podría descartar los suelos de granos grueso, en donde más de la mitad del material pasa por el tamiz Nº 200 Los resultados estadísticos de estos ensayos, desarrollados mediante el programa STATGRAPHICS CENTURION XV, señalan:

Gravedad Específica

Figura 37. Medias y 95% de FISHER y LCD para Gravedad Específica. Nota. Datos tomados de los resultados statgraphics.

Tabla 16. Medias con intervalos de confianza del 95.0% para Gravedad Específica.

			Error Est.		
	Casos	Media	(s agrupada)	Límite	Límite Superior
				Inferior	
Parcela_1	3	2.63333	0.0379912	2.5773	2.68937
Parcela_10	3	2.58333	0.0379912	2.5273	2.63937
Parcela_2	3	2.53333	0.0379912	2.4773	2.58937
Parcela_3	3	2.62	0.0379912	2.56396	2.67604
Parcela_4	3	2.51	0.0379912	2.45396	2.56604
Parcela_5	3	2.59	0.0379912	2.53396	2.64604
Parcela_6	3	2.49333	0.0379912	2.4373	2.54937
Parcela_7	3	2.58333	0.0379912	2.5273	2.63937
Parcela_8	3	2.54333	0.0379912	2.4873	2.59937
Parcela_9	3	2.59	0.0379912	2.53396	2.64604
Total	30	2.568			

Nota. Datos tomados de los resultados statgraphics.

Pruebas de Múltiple Rangos

	Casos	Media	Grupos Homogéneos
Parcela_6	3	2.49333	Х
Parcela_4	3	2.51	XX
Parcela_2	3	2.53333	XXX
Parcela_8	3	2.54333	XXX
Parcela_7	3	2.58333	XXX
Parcela_10	3	2.58333	XXX
Parcela_5	3	2.59	XXX
Parcela_9	3	2.59	XXX
Parcela_3	3	2.62	XX
Parcela_1	3	2.63333	Х

 Tabla 17. Método: 95.0 porcentaje LSD para Gravedad Específica.

Nota. Datos tomados de los resultados statgraphie	cs.
---	-----

 Tabla 18. Comparación Múltiple para Gravedad Específica.

Contraste	Sig	Diferencia	+/- Límites
Parcela 1 - Parcela 10	2.8.	0.05	0.112074
Parcela 1 - Parcela 2		0.1	0.112074
Parcela 1 - Parcela 3		0.0133333	0.112074
Parcela 1 - Parcela 4	*	0.123333	0.112074
Parcela 1 - Parcela 5		0.0433333	0.112074
Parcela 1 - Parcela 6	*	0.14	0.112074
Parcela 1 - Parcela 7		0.05	0.112074
Parcela 1 - Parcela 8		0.09	0.112074
Parcela 1 - Parcela 9		0.0433333	0.112074
Parcela 10 - Parcela 2		0.05	0.112074
Parcela 10 - Parcela 3		-0.0366667	0.112074
Parcela 10 - Parcela 4		0.0733333	0.112074
Parcela 10 - Parcela 5		-0.006666667	0.112074
Parcela 10 - Parcela 6		0.09	0.112074
Parcela 10 - Parcela 7		0.0	0.112074
Parcela_10 - Parcela_8		0.04	0.112074
Parcela_10 - Parcela_9		-0.006666667	0.112074
Parcela_2 - Parcela_3		-0.0866667	0.112074
Parcela_2 - Parcela_4		0.0233333	0.112074
Parcela_2 - Parcela_5		-0.0566667	0.112074
Parcela_2 - Parcela_6		0.04	0.112074
Parcela_2 - Parcela_7		-0.05	0.112074
Parcela_2 - Parcela_8		-0.01	0.112074
Parcela_2 - Parcela_9		-0.0566667	0.112074
Parcela_3 - Parcela_4		0.11	0.112074
Parcela_3 - Parcela_5		0.03	0.112074
Parcela_3 - Parcela_6	*	0.126667	0.112074
Parcela_3 - Parcela_7		0.0366667	0.112074
Parcela_3 - Parcela_8		0.0766667	0.112074
Parcela_3 - Parcela_9		0.03	0.112074
Parcela_4 - Parcela_5		-0.08	0.112074
Parcela_4 - Parcela_6		0.0166667	0.112074

Parcela_4 - Parcela_7	-0.0733333	0.112074
Parcela_4 - Parcela_8	-0.0333333	0.112074
Parcela_4 - Parcela_9	-0.08	0.112074
Parcela_5 - Parcela_6	0.0966667	0.112074
Parcela_5 - Parcela_7	0.00666667	0.112074
Parcela_5 - Parcela_8	0.0466667	0.112074
Parcela_5 - Parcela_9	0.0	0.112074
Parcela_6 - Parcela_7	-0.09	0.112074
Parcela_6 - Parcela_8	-0.05	0.112074
Parcela_6 - Parcela_9	-0.0966667	0.112074
Parcela_7 - Parcela_8	0.04	0.112074
Parcela_7 - Parcela_9	-0.006666667	0.112074
Parcela_8 - Parcela_9	-0.0466667	0.112074

* indica una diferencia significativa.

Para la gravedad*tas* **praific** *torsachas degis* **trado** *logis* **trado** *logis trado logis log*

Porcentaje de Arena (% Arena).

Figura 38. Medias y 95% de FISHER y LCD para porcentaje de Arena. Nota. Datos tomados de los resultados statgraphics.

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	44.24	3.6098	38.9155	49.5645
Parcela_10	3	42.9533	3.6098	37.6289	48.2778
Parcela_2	3	43.3567	3.6098	38.0322	48.6811
Parcela_3	3	41.9433	3.6098	36.6189	47.2678
Parcela_4	3	39.4367	3.6098	34.1122	44.7611
Parcela_5	3	48.59	3.6098	43.2655	53.9145
Parcela_6	3	45.77	3.6098	40.4455	51.0945
Parcela_7	3	45.0133	3.6098	39.6889	50.3378
Parcela_8	3	44.24	3.6098	38.9155	49.5645
Parcela_9	3	50.3533	3.6098	45.0289	55.6778
Total	30	44.5897			

 Tabla 19. Medias con intervalos de confianza del 95.0% para Porcentaje de Arena.

 Error Est

Nota. Datos tomados de los resultados statgraphics.

Pruebas de Múltiple Rangos

 Tabla20. Método: 95.0 porcentaje LSD para porcentaje de Arena.

	Casos	Media	Grupos Homogéneos
Parcela_4	3	39.4367	Х
Parcela_3	3	41.9433	XX
Parcela_10	3	42.9533	XX
Parcela_2	3	43.3567	XX
Parcela_8	3	44.24	XX
Parcela_1	3	44.24	XX
Parcela_7	3	45.0133	XX
Parcela_6	3	45.77	XX
Parcela_5	3	48.59	XX
Parcela_9	3	50.3533	Х

Nota. Datos tomados de los resultados statgraphics.

 Tabla21. Comparación Múltiple para Porcentaje de Arena.

		J	
Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		1.28667	10.6489

Parcela_1 - Parcela_2		0.883333	10.6489
Parcela_1 - Parcela_3		2.29667	10.6489
Parcela_1 - Parcela_4		4.80333	10.6489
Parcela_1 - Parcela_5		-4.35	10.6489
Parcela 1 - Parcela 6		-1.53	10.6489
Parcela_1 - Parcela_7		-0.773333	10.6489
Parcela_1 - Parcela_8		0.0	10.6489
Parcela_1 - Parcela_9		-6.11333	10.6489
Parcela_10 - Parcela_2		-0.403333	10.6489
Parcela_10 - Parcela_3		1.01	10.6489
Parcela_10 - Parcela_4		3.51667	10.6489
Parcela_10 - Parcela_5		-5.63667	10.6489
Parcela_10 - Parcela_6		-2.81667	10.6489
Parcela_10 - Parcela_7		-2.06	10.6489
Parcela_10 - Parcela_8		-1.28667	10.6489
Parcela 10 - Parcela 9		-7.4	10.6489
Parcela 2 - Parcela 3		1.41333	10.6489
Parcela 2 - Parcela 4		3.92	10.6489
Parcela 2 - Parcela 5		-5.23333	10.6489
Parcela_2 - Parcela_6		-2.41333	10.6489
Parcela_2 - Parcela_7		-1.65667	10.6489
Parcela_2 - Parcela_8		-0.883333	10.6489
Parcela_2 - Parcela_9		-6.99667	10.6489
Parcela_3 - Parcela_4		2.50667	10.6489
Parcela_3 - Parcela_5		-6.64667	10.6489
Parcela_3 - Parcela_6		-3.82667	10.6489
Parcela_3 - Parcela_7		-3.07	10.6489
Parcela_3 - Parcela_8		-2.29667	10.6489
Parcela_3 - Parcela_9		-8.41	10.6489
Parcela_4 - Parcela_5		-9.15333	10.6489
Parcela_4 - Parcela_6		-6.33333	10.6489
Parcela_4 - Parcela_7		-5.57667	10.6489
Parcela_4 - Parcela_8		-4.80333	10.6489
Parcela_4 - Parcela_9	*	-10.9167	10.6489
Parcela_5 - Parcela_6		2.82	10.6489
Parcela_5 - Parcela_7		3.57667	10.6489
Parcela_5 - Parcela_8		4.35	10.6489
Parcela_5 - Parcela_9		-1.76333	10.6489
Parcela_6 - Parcela_7		0.756667	10.6489
Parcela_6 - Parcela_8		1.53	10.6489
Parcela_6 - Parcela_9		-4.58333	10.6489
Parcela_7 - Parcela_8		0.773333	10.6489
Parcela_7 - Parcela_9		-5.34	10.6489
Parcela_8 - Parcela_9		-6.11333	10.6489

* indica una diferencia significativa.

El asterisco q**Norse Dacuentra al olado los hosulta pares aigdi phique** estos pares muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza (Ver Tabla 23). Se han identificado 2 grupos homogéneos según la alineación de las X's en columnas. Y existe una diferencia estadísticamente significativa entre Parcela_4-Parcela_9, que se puede apreciar en la Tabla. 23 Existe variabilidad de las media en todas las parcelas.

Porcentaje de Limo (%Limo)

Figura 39. Medias y 95% de FISHER y LCD para Porcentaje de Limo. Nota. Datos tomados de los resultados statgraphics.

			N N		<i>y</i>
			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	53.72	3.65992	48.3216	59.1184
Parcela_10	3	53.2833	3.65992	47.8849	58.6817
Parcela_2	3	50.2467	3.65992	44.8483	55.6451
Parcela_3	3	55.9167	3.65992	50.5183	61.3151
Parcela_4	3	55.7967	3.65992	50.3983	61.1951
Parcela_5	3	47.7833	3.65992	42.3849	53.1817
Parcela_6	3	50.4667	3.65992	45.0683	55.8651
Parcela_7	3	51.2867	3.65992	45.8883	56.6851
Parcela_8	3	50.8533	3.65992	45.4549	56.2517
Parcela_9	3	44.3933	3.65992	38.9949	49.7917
Total	30	51.3747			

Tabla 22. Medias con intervalos de confianza del 95.0% para Porcentaje de Limo

Nota. Datos tomados de los resultados statgraphics.

Pruebas de Múltiple Rangos.

 Tabla 23. Método: 95.0 porcentaje LSD para Porcentaje de Limo.

	Casos	Media	Grupos Homogéneos
Parcela_9	3	44.3933	Х
Parcela_5	3	47.7833	XX

Parcela_2	3	50.2467	XX
Parcela_6	3	50.4667	XX
Parcela_8	3	50.8533	XX
Parcela_7	3	51.2867	XX
Parcela_10	3	53.2833	XX
Parcela_1	3	53.72	XX
Parcela_4	3	55.7967	Х
Parcela 3	3	55.9167	Х

 Parcela_3
 3
 55.916/
 ×

 Nota. Datos tomados de los resultados statgraphics.

 Tabla 24. Comparación Múltiple para Porcentaje de Limo.

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		0.436667	10.7968
Parcela_1 - Parcela_2		3.47333	10.7968
Parcela_1 - Parcela_3		-2.19667	10.7968
Parcela_1 - Parcela_4		-2.07667	10.7968
Parcela_1 - Parcela_5		5.93667	10.7968
Parcela_1 - Parcela_6		3.25333	10.7968
Parcela_1 - Parcela_7		2.43333	10.7968
Parcela_1 - Parcela_8		2.86667	10.7968
Parcela_1 - Parcela_9		9.32667	10.7968
Parcela_10 - Parcela_2		3.03667	10.7968
Parcela_10 - Parcela_3		-2.63333	10.7968
Parcela_10 - Parcela_4		-2.51333	10.7968
Parcela_10 - Parcela_5		5.5	10.7968
Parcela_10 - Parcela_6		2.81667	10.7968
Parcela_10 - Parcela_7		1.99667	10.7968
Parcela_10 - Parcela_8		2.43	10.7968
Parcela_10 - Parcela_9		8.89	10.7968
Parcela_2 - Parcela_3		-5.67	10.7968
Parcela_2 - Parcela_4		-5.55	10.7968
Parcela_2 - Parcela_5		2.46333	10.7968
Parcela_2 - Parcela_6		-0.22	10.7968
Parcela_2 - Parcela_7		-1.04	10.7968
Parcela_2 - Parcela_8		-0.606667	10.7968
Parcela_2 - Parcela_9		5.85333	10.7968
Parcela_3 - Parcela_4		0.12	10.7968
Parcela_3 - Parcela_5		8.13333	10.7968
Parcela_3 - Parcela_6		5.45	10.7968
Parcela_3 - Parcela_7		4.63	10.7968
Parcela_3 - Parcela_8		5.06333	10.7968
Parcela_3 - Parcela_9	*	11.5233	10.7968
Parcela_4 - Parcela_5		8.01333	10.7968
Parcela_4 - Parcela_6		5.33	10.7968
Parcela_4 - Parcela_7		4.51	10.7968
Parcela_4 - Parcela_8		4.94333	10.7968
Parcela_4 - Parcela_9	*	11.4033	10.7968
Parcela_5 - Parcela_6		-2.68333	10.7968
Parcela_5 - Parcela_7		-3.50333	10.7968

Parcela_5 - Parcela_8	-3.07	10.7968
Parcela_5 - Parcela_9	3.39	10.7968
Parcela_6 - Parcela_7	-0.82	10.7968
Parcela_6 - Parcela_8	-0.386667	10.7968
Parcela_6 - Parcela_9	6.07333	10.7968
Parcela_7 - Parcela_8	0.433333	10.7968
Parcela_7 - Parcela_9	6.89333	10.7968
Parcela_8 - Parcela_9	6.46	10.7968

* indica una diferencia significativa.

El asterisco q**Notse Encoentora** adolado los tesulta dentesta de los tesulta de los tesulta de los tesulta de los tesulta de los de confianza. Se han identificado 3 grupos homogéneos según la formación de las X's en columnas. No existe diferencias estadísticamente significativas entre aquellos niveles que compartan una misma columna de X's de la tabla 23.

Porcentaje de Arcilla (%Arcilla)

Figura 40. Medias y 95% de FISHER y LCD para Porcentaje de Arcilla. Nota. Datos tomados de los resultados statgraphics.

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	2.04	1.07739	0.450851	3.62915
Parcela_10	3	3.76333	1.07739	2.17418	5.35248
Parcela_2	3	6.39667	1.07739	4.80752	7.98582
Parcela_3	3	2.14	1.07739	0.550851	3.72915
Parcela_4	3	4.76667	1.07739	3.17752	6.35582
Parcela_5	3	3.62667	1.07739	2.03752	5.21582
Parcela_6	3	3.76333	1.07739	2.17418	5.35248
Parcela_7	3	3.7	1.07739	2.11085	5.28915
Parcela_8	3	4.90667	1.07739	3.31752	6.49582
Parcela_9	3	5.25333	1.07739	3.66418	6.84248
Total	30	4.03567			

 Tabla 25. Medias con intervalos de confianza del 95.0% para Porcentaje de Arcilla.

Nota. Datos tomados de los resultados statgraphics.

Pruebas de Múltiple Rangos

 Tabla 26. Método: 95.0 porcentaje LSD para Porcentaje de Arcilla.

	Casos	Media	Grupos Homogéneos
Parcela_1	3	2.04	Х
Parcela_3	3	2.14	XX
Parcela_5	3	3.62667	XXX
Parcela_7	3	3.7	XXX
Parcela_6	3	3.76333	XXX
Parcela_10	3	3.76333	XXX
Parcela_4	3	4.76667	XXX
Parcela_8	3	4.90667	XXX
Parcela_9	3	5.25333	XX
Parcela_2	3	6.39667	Х

Nota. Datos tomados de los resultados statgraphics.

	Tabla 27.	Comparación	Múltiple	para Porcenta	ije de Arcilla
--	-----------	-------------	----------	---------------	----------------

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		-1.72333	3.1783
Parcela_1 - Parcela_2	*	-4.35667	3.1783

Parcela_1 - Parcela_3		-0.1	3.1783
Parcela_1 - Parcela_4		-2.72667	3.1783
Parcela_1 - Parcela_5		-1.58667	3.1783
Parcela_1 - Parcela_6		-1.72333	3.1783
Parcela_1 - Parcela_7		-1.66	3.1783
Parcela_1 - Parcela_8		-2.86667	3.1783
Parcela_1 - Parcela_9	*	-3.21333	3.1783
Parcela_10 - Parcela_2		-2.63333	3.1783
Parcela_10 - Parcela_3		1.62333	3.1783
Parcela_10 - Parcela_4		-1.00333	3.1783
Parcela_10 - Parcela_5		0.136667	3.1783
Parcela_10 - Parcela_6		0.0	3.1783
Parcela_10 - Parcela_7		0.0633333	3.1783
Parcela_10 - Parcela_8		-1.14333	3.1783
Parcela_10 - Parcela_9		-1.49	3.1783
Parcela_2 - Parcela_3	*	4.25667	3.1783
Parcela_2 - Parcela_4		1.63	3.1783
Parcela_2 - Parcela_5		2.77	3.1783
Parcela_2 - Parcela_6		2.63333	3.1783
Parcela_2 - Parcela_7		2.69667	3.1783
Parcela_2 - Parcela_8		1.49	3.1783
Parcela_2 - Parcela_9		1.14333	3.1783
Parcela_3 - Parcela_4		-2.62667	3.1783
Parcela_3 - Parcela_5		-1.48667	3.1783
Parcela_3 - Parcela_6		-1.62333	3.1783
Parcela_3 - Parcela_7		-1.56	3.1783
Parcela_3 - Parcela_8		-2.76667	3.1783
Parcela_3 - Parcela_9		-3.11333	3.1783
Parcela_4 - Parcela_5		1.14	3.1783
Parcela_4 - Parcela_6		1.00333	3.1783
Parcela_4 - Parcela_7		1.06667	3.1783
Parcela 4 - Parcela 8		-0.14	3.1783
Parcela 4 - Parcela 9		-0.486667	3.1783
Parcela_5 - Parcela_6		-0.136667	3.1783
Parcela_5 - Parcela_7		-0.0733333	3.1783
Parcela_5 - Parcela_8		-1.28	3.1783
Parcela 5 - Parcela 9		-1.62667	3.1783
Parcela 6 - Parcela 7		0.0633333	3.1783
Parcela 6 - Parcela 8		-1.14333	3.1783
Parcela 6 - Parcela 9		-1.49	3.1783
Parcela 7 - Parcela 8		-1.20667	3.1783
Parcela 7 - Parcela 9		-1.55333	3.1783
Parcela 8 - Parcela 9		-0.346667	3,1783
		0.040007	5.1705

* indica una diferencia significativa.

El asterisco q**Notse Datuentura al ola do los hosulta drarest angoli qui pique** estos pares muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza (Ver Tabla 27). Se han identificado 7 grupos homogéneos según la alineación de las X's en columnas. No existen diferencias estadísticamente significativas entre aquellos niveles que compartan una misma columna de X's de la tabla 26.

Para el porcentaje de Arena, Limo y arcilla, los grupos homogéneos identificado fueron, 6 grupos, 6 grupos, 7 grupos respectivamente.

Tanto para la Arena, limo y Arcilla existe variabilidad de las medias, del porcentaje de Arena prácticamente entre todas las parcelas muestreadas.

Los pares con diferencia significativas fueron: Arena 40 pares, Limo 38 pares, Arcillas 34 pares. (Ver Tablas 21, 24 y 27).

Los porcentajes de arcilla resultaron dentro de un rango de 1% a 6%, al realizar una comparación granulométrica se observo que estos porcentajes resultan poco representativos con respecto a los contenidos de limos y arenas.

Análisis de conglomerados para la Granulometría.

Figura 41. **Dendograma. Método del vecino más cercano, Euclideana Cuadrada.** Nota. Datos tomados de los resultados statgraphics.

Con este análisis podemos observar y determinar que las muestra tomadas tienen un carácter homogéneo ya que la distancia entre la mayoría de ella es corta, exceptuando a cuatro de ellas que la distancia es significativamente grande alejándose del resto de las muestra.

Límites de consistencia

Los Límite líquido en conjunto con el índice de plasticidad son los que marcan la diferencia para hacer la clasificación del suelo porque su ubicación gráfica puede estar por encima o por debajo de la línea A del gráfico de plasticidad de casa grande.

Figura 42. Gráfico de plasticidad de Casagrande. Lambe y Whitman. (1994)

Los límites de Atterberg o límites de consistencia se basan en el concepto de que los suelos finos, presentes en la naturaleza, pueden encontrarse en diferentes estados, dependiendo del contenido de agua. Así un suelo se puede encontrar en un estado sólido, semisólido, plástico, semilíquido y líquido, como se indica en la figura 43.

Figura 43. Límites de Atterberg e índices asociados. Lambe (1987)

Los límites líquidos en el sector (ver anexo IX) se presentaron en rangos de porcentaje de (32.86-34.04), (34.05-35.22), y (35.23-36.40). El límite plástico es de (25.05-27.57), (27.58-30.09) y (30.10-32.60. (Ver Anexo X).

De la diferencia entre el límite líquido y el límite de plasticidad se obtiene el índice de plasticidad el cual en este caso de estudio según el Sistema de Clasificación Unificado de Suelos, estos se ubicaron por debajo de la línea A lo cual corresponde a un suelo tipo Limo Orgánico (OL) el cual como se observa prevalece en el Sector, asignando características homogéneas al suelo del sector.

Los resultados estadísticos de estos ensayos, desarrollados mediante el programa STATGRAPHICS CENTURION XV, señalan que en los valores de limite liquido se han identificado 3 grupos homogéneos según la alineación de las X's en columnas (Ver tabla 31). Y existen 15 pares que muestran diferencias estadísticamente significativas con un nivel del 95,0% de confianza (Ver tabla 32). En los valores de media se evidencia una variabilidad significativa en las parcelas 2, 3, 5, 8 y 9. (Ver Figura 73)

Límite Líquido.

Figura 45. **Medias y 95% de FISHER y LCD para Límite Líquido.** Nota. Datos tomados de los resultados statgraphics.

 Tabla 28. Medias con intervalos de confianza del 95.0% para Límite Líquido.

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	38.4	4.2189	32.1771	44.6229
Parcela_10	3	39.9	4.2189	33.6771	46.1229
Parcela_2	3	38.7333	4.2189	32.5104	44.9562
Parcela_3	3	45.9333	4.2189	39.7104	52.1562
Parcela_4	3	39.3	4.2189	33.0771	45.5229
Parcela_5	3	37.3333	4.2189	31.1104	43.5562
Parcela_6	3	41.8333	4.2189	35.6104	48.0562
Parcela_7	3	30.7333	4.2189	24.5104	36.9562
Parcela_8	3	37.9333	4.2189	31.7104	44.1562
Parcela_9	3	36.9667	4.2189	30.7438	43.1896
Total	30	38.7067			

Nota. Datos tomados de los resultados statgraphics.

Pruebas de Múltiple Rangos

 Tabla 29. Método: 95.0 porcentaje LSD para Límite Líquido.

		Error Est.		
Casos	Media	(s agrupada)	Límite Inferior	Límite Superior

Parcela_1	3	38.4	4.2189	32.1771	44.6229
Parcela_10	3	39.9	4.2189	33.6771	46.1229
Parcela_2	3	38.7333	4.2189	32.5104	44.9562
Parcela_3	3	45.9333	4.2189	39.7104	52.1562
Parcela_4	3	39.3	4.2189	33.0771	45.5229
Parcela_5	3	37.3333	4.2189	31.1104	43.5562
Parcela_6	3	41.8333	4.2189	35.6104	48.0562
Parcela_7	3	30.7333	4.2189	24.5104	36.9562
Parcela_8	3	37.9333	4.2189	31.7104	44.1562
Parcela_9	3	36.9667	4.2189	30.7438	43.1896
Total	30	38.7067			

Nota. Datos tomados de los resultados statgraphics.

 Tabla 30. Comparación Múltiple para Límite Líquido.

Contracto	Cia	Diferencia	1 / I inited
Contraste	Sig.	Diferencia	+/- Limites
Parcela_1 - Parcela_10		-1.5	12.4458
Parcela_1 - Parcela_2		-0.333333	12.4458
Parcela_1 - Parcela_3		-7.53333	12.4458
Parcela_1 - Parcela_4		-0.9	12.4458
Parcela_1 - Parcela_5		1.06667	12.4458
Parcela_1 - Parcela_6		-3.43333	12.4458
Parcela_1 - Parcela_7		7.66667	12.4458
Parcela_1 - Parcela_8		0.466667	12.4458
Parcela_1 - Parcela_9		1.43333	12.4458
Parcela_10 - Parcela_2		1.16667	12.4458
Parcela_10 - Parcela_3		-6.03333	12.4458
Parcela_10 - Parcela_4		0.6	12.4458
Parcela_10 - Parcela_5		2.56667	12.4458
Parcela_10 - Parcela_6		-1.93333	12.4458

Parcela 10 - Parcela 7		9.16667	12.4458
Parcela_10 - Parcela_8		1.96667	12.4458
Parcela_10 - Parcela_9		2.93333	12.4458
Parcela_2 - Parcela_3		-7.2	12.4458
Parcela_2 - Parcela_4		-0.566667	12.4458
Parcela_2 - Parcela_5		1.4	12.4458
Parcela_2 - Parcela_6		-3.1	12.4458
Parcela_2 - Parcela_7		8.0	12.4458
Parcela_2 - Parcela_8		0.8	12.4458
Parcela_2 - Parcela_9		1.76667	12.4458
Parcela_3 - Parcela_4		6.63333	12.4458
Parcela_3 - Parcela_5		8.6	12.4458
Parcela_3 - Parcela_6		4.1	12.4458
Parcela_3 - Parcela_7	*	15.2	12.4458
Parcela_3 - Parcela_8		8.0	12.4458
Parcela_3 - Parcela_9		8.96667	12.4458
Parcela_4 - Parcela_5		1.96667	12.4458
Parcela_4 - Parcela_6		-2.53333	12.4458
Parcela_4 - Parcela_7		8.56667	12.4458
Parcela_4 - Parcela_8		1.36667	12.4458
Parcela_4 - Parcela_9		2.33333	12.4458
Parcela_5 - Parcela_6		-4.5	12.4458
Parcela_5 - Parcela_7		6.6	12.4458
Parcela_5 - Parcela_8		-0.6	12.4458
Parcela_5 - Parcela_9		0.366667	12.4458
Parcela_6 - Parcela_7		11.1	12.4458
Parcela_6 - Parcela_8		3.9	12.4458
Parcela_6 - Parcela_9		4.86667	12.4458
Parcela_7 - Parcela_8		-7.2	12.4458
Parcela_7 - Parcela_9		-6.23333	12.4458
Parcela_8 - Parcela_9		0.966667	12.4458

* indica una diferencia significativa.

Límite Plástico. Nota. Datos tomados de los resultados statgraphics.

Para el Limite Plástico se obtuvieron resultados de 8 grupos homogéneos (Ver Tabla 34), al igual que 41 pares que muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza. (Ver Tabla35) y se observa la existencia de variabilidad de las medias prácticamente entre todas las parcelas muestreadas. (Ver Figura 74)

Figura 46. **Medias y 95% de FISHER y LCD para Límite Plástico.** Nota. Datos tomados de los resultados statgraphics.

Tabla 31. Medias con intervalos de confianza del 95.0% para Límite Plástico.

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	28.7667	2.78183	24.6635	32.8699
Parcela_10	3	30.8667	2.78183	26.7635	34.9699
Parcela_2	3	27.4333	2.78183	23.3301	31.5365
Parcela_3	3	35.9333	2.78183	31.8301	40.0365
Parcela_4	3	29.4	2.78183	25.2968	33.5032
Parcela_5	3	28.2667	2.78183	24.1635	32.3699
Parcela_6	3	30.4333	2.78183	26.3301	34.5365
Parcela_7	3	24.5667	2.78183	20.4635	28.6699
Parcela_8	3	29.9667	2.78183	25.8635	34.0699
Parcela_9	3	26.4	2.78183	22.2968	30.5032
Total	30	29.2033			

Nota. Datos tomados de los resultados statgraphics.

Pruebas de Múltiple Rangos

	Casos	Media	Grupos Homogéneos
Parcela_7	3	24.5667	Х
Parcela_9	3	26.4	Х
Parcela_2	3	27.4333	Х
Parcela_5	3	28.2667	XX
Parcela_1	3	28.7667	XX
Parcela_4	3	29.4	XX
Parcela_8	3	29.9667	XX
Parcela_6	3	30.4333	XX
Parcela_10	3	30.8667	XX
Parcela_3	3	35.9333	Х

 Tabla 32. Método: 95.0 porcentaje LSD para el Límite Plástico.

Nota. Datos tomados de los resultados statgraphics.

 Tabla 33. Comparación Múltiple para el Límite Plástico.

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		-2.1	8.2064
Parcela_1 - Parcela_2		1.33333	8.2064
Parcela_1 - Parcela_3		-7.16667	8.2064
Parcela_1 - Parcela_4		-0.633333	8.2064
Parcela_1 - Parcela_5		0.5	8.2064
Parcela_1 - Parcela_6		-1.66667	8.2064
Parcela_1 - Parcela_7		4.2	8.2064
Parcela_1 - Parcela_8		-1.2	8.2064
Parcela_1 - Parcela_9		2.36667	8.2064
Parcela_10 - Parcela_2		3.43333	8.2064
Parcela_10 - Parcela_3		-5.06667	8.2064
Parcela_10 - Parcela_4		1.46667	8.2064
Parcela_10 - Parcela_5		2.6	8.2064
Parcela_10 - Parcela_6		0.433333	8.2064
Parcela_10 - Parcela_7		6.3	8.2064
Parcela_10 - Parcela_8		0.9	8.2064
Parcela_10 - Parcela_9		4.46667	8.2064
Parcela_2 - Parcela_3	*	-8.5	8.2064
Parcela_2 - Parcela_4		-1.96667	8.2064
Parcela_2 - Parcela_5		-0.833333	8.2064
Parcela_2 - Parcela_6		-3.0	8.2064
Parcela_2 - Parcela_7		2.86667	8.2064
Parcela_2 - Parcela_8		-2.53333	8.2064
Parcela_2 - Parcela_9		1.03333	8.2064
Parcela_3 - Parcela_4		6.53333	8.2064
Parcela_3 - Parcela_5		7.66667	8.2064
Parcela_3 - Parcela_6		5.5	8.2064

Parcela_3 - Parcela_7	*	11.3667	8.2064
Parcela_3 - Parcela_8		5.96667	8.2064
Parcela_3 - Parcela_9	*	9.53333	8.2064
Parcela_4 - Parcela_5		1.13333	8.2064
Parcela_4 - Parcela_6		-1.03333	8.2064
Parcela_4 - Parcela_7		4.83333	8.2064
Parcela_4 - Parcela_8		-0.566667	8.2064
Parcela_4 - Parcela_9		3.0	8.2064
Parcela_5 - Parcela_6		-2.16667	8.2064
Parcela_5 - Parcela_7		3.7	8.2064
Parcela_5 - Parcela_8		-1.7	8.2064
Parcela_5 - Parcela_9		1.86667	8.2064
Parcela_6 - Parcela_7		5.86667	8.2064
Parcela_6 - Parcela_8		0.466667	8.2064
Parcela_6 - Parcela_9		4.03333	8.2064
Parcela_7 - Parcela_8		-5.4	8.2064
Parcela_7 - Parcela_9		-1.83333	8.2064
Parcela_8 - Parcela_9		3.56667	8.2064

* indica una diferencia significativa. Índice de Plastičidad.Datos tomados de los resultados statgraphics.

En los valores de índice de plasticidad, se han identificado 6 grupos homogéneos (Ver Tabla 35). Existen 40 pares que muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza. (Ver Tabla 36) y se observa la existencia de variabilidad de las medias prácticamente entre todas las parcelas muestreadas.

Figura 47. **Medias y 95% de FISHER y LCD para el Índice de Plasticidad.** Nota. Datos tomados de los resultados statgraphics.
			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	9.63333	2.60953	5.78427	13.4824
Parcela_10	3	9.03333	2.60953	5.18427	12.8824
Parcela_2	3	11.3	2.60953	7.45093	15.1491
Parcela_3	3	10.0	2.60953	6.15093	13.8491
Parcela_4	3	9.9	2.60953	6.05093	13.7491
Parcela_5	3	9.06667	2.60953	5.2176	12.9157
Parcela_6	3	11.4	2.60953	7.55093	15.2491
Parcela_7	3	6.16667	2.60953	2.3176	10.0157
Parcela_8	3	7.96667	2.60953	4.1176	11.8157
Parcela_9	3	10.5667	2.60953	6.7176	14.4157
Total	30	9.50333			

 Tabla 34. Medias con intervalos de confianza del 95.0% para el Índice de Plasticidad.

Nota. Datos tomados de los resultados statgraphics.

 Tabla 35. Método: 95.0 porcentaje LSD para el Índice de Plasticidad.

	Casos	Media	Grupos Homogéneos
Parcela_7	3	6.16667	Х
Parcela_8	3	7.96667	Х
Parcela_10	3	9.03333	Х
Parcela_5	3	9.06667	Х
Parcela_1	3	9.63333	Х
Parcela_4	3	9.9	Х
Parcela_3	3	10.0	Х
Parcela_9	3	10.5667	Х
Parcela_2	3	11.3	Х
Parcela_6	3	11.4	Х

Nota. Datos tomados de los resultados statgraphics.

 Tabla 36. Comparación Múltiple para el Índice de Plasticidad.

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		0.6	7.69814

Parcela_1 - Parcela_2	-1.66667	7.69814
Parcela_1 - Parcela_3	-0.366667	7.69814
Parcela_1 - Parcela_4	-0.266667	7.69814
Parcela_1 - Parcela_5	0.566667	7.69814
Parcela_1 - Parcela_6	-1.76667	7.69814
Parcela_1 - Parcela_7	3.46667	7.69814
Parcela_1 - Parcela_8	1.66667	7.69814
Parcela_1 - Parcela_9	-0.933333	7.69814
Parcela_10 - Parcela_2	-2.26667	7.69814
Parcela_10 - Parcela_3	-0.966667	7.69814
Parcela_10 - Parcela_4	-0.866667	7.69814
Parcela_10 - Parcela_5	-0.0333333	7.69814
Parcela_10 - Parcela_6	-2.36667	7.69814
Parcela 10 - Parcela 7	2.86667	7.69814
Parcela_10 - Parcela_8	1.06667	7.69814
Parcela_10 - Parcela_9	-1.53333	7.69814
Parcela_2 - Parcela_3	1.3	7.69814
Parcela 2 - Parcela 4	1.4	7.69814
Parcela 2 - Parcela 5	2.23333	7.69814
Parcela 2 - Parcela 6	-0.1	7.69814
Parcela 2 - Parcela 7	5.13333	7.69814
Parcela 2 - Parcela 8	3.33333	7.69814
Parcela 2 - Parcela 9	0.733333	7.69814
Parcela_3 - Parcela_4	0.1	7.69814
Parcela_3 - Parcela_5	0.933333	7.69814
Parcela_3 - Parcela_6	-1.4	7.69814
Parcela_3 - Parcela_7	3.83333	7.69814
Parcela_3 - Parcela_8	2.03333	7.69814
Parcela_3 - Parcela_9	-0.566667	7.69814
Parcela_4 - Parcela_5	0.833333	7.69814
Parcela_4 - Parcela_6	-1.5	7.69814
Parcela_4 - Parcela_7	3.73333	7.69814
Parcela_4 - Parcela_8	1.93333	7.69814
Parcela_4 - Parcela_9	-0.666667	7.69814
Parcela_5 - Parcela_6	-2.33333	7.69814
Parcela_5 - Parcela_7	2.9	7.69814
Parcela_5 - Parcela_8	1.1	7.69814
Parcela_5 - Parcela_9	-1.5	7.69814
Parcela_6 - Parcela_7	5.23333	7.69814
Parcela_6 - Parcela_8	3.43333	7.69814
Parcela_6 - Parcela_9	0.833333	7.69814
Parcela_7 - Parcela_8	-1.8	7.69814
Parcela_7 - Parcela_9	-4.4	7.69814
Parcela_8 - Parcela_9	-2.6	7.69814
		•

Para los resultados. *Deugravoltad los plecífica e yultantos exapges quiss*, se puede observar que algunos de los valores obtenidos se encuentran fuera de los rangos para los limos, cuya clasificación fue obtenida con los ensayos de Limites, esto pudo ser ocasionado por la poca desaireación de la mezcla agua-suelo o por errores de lectura de los pesos en la realización de los ensayos de gravedad especifica.

Se observó que los valores de límite líquido estuvieron en los rangos desde 25% a 48% (ver anexo VII) en la mayoría de los puntos muestreados, con excepción de unas pocas muestras donde los limites estuvieron por debajo del 20% lo que se puede atribuir a los contenidos de arenas presentes en algunas parcelas. Los valores de índice de plasticidad estuvieron entre 6.5% y 15.2% (ver anexo X), con excepción de puntos que presentaron porcentaje menores del 5%, que representan las arenas finas. Al grafica dichos valores se observo que en su mayoría todas las muestras estuvieron por debajo de la línea A, en el área que denota una clasificación según **Atterberg** de suelos limosos con contenido orgánico (OL).

Objetivo Nº 2. Obtener propiedades físicas del suelo mediante ensayos de permeabilidad, resistencia al corte y compresibilidad.

Las respuestas de este objetivo son las que se muestran a continuación:

En cuanto a la resistencia al corte la prueba se llevó a cabo deformando la muestra a una velocidad de desplazamiento controlada de 2 mm/min, peso del vástago de 4.5 kg y aplicando una carga vertical constante.

Se ensayaron tres especímenes para cada punto de muestreo, cada uno bajo un dial de carga de 5kg, 10kg y 15kg, para determinar su efecto sobre la resistencia al corte en los procesos de erosión.

La cohesión en la zona de acuerdo a los estudios realizados (ver anexo XVIII) se encuentra entre 0.002 y 0.09 kgf/cm² y el ángulo de fricción (ϕ) (ver anexo XIX) alrededor de 28 y 32°, próximos a ser limo orgánico (OL). Pero presenta una variabilidad por su alto contenido de arena. Estos valores están acorde con los mostrados en la tabla 40.

Tabla 37. Angulo de <u>Fricción drenado para arenas y limos.</u>

Tipo de SueloØ(grados)

Arena: Granos redondeados	
Gruesa	27°-30°
Media	30°-35°
Densa	35°-38°
Arena granos angulares	
Gruesa	30°-35°
Media	35°-40°
Densa	40°-45°
Grava con Algo de arena	34°-48°
Limo	26°-35°

Fuente: Braja M. Das (1999)

Es importante establecer que estas propiedades se relacionan directamente, es decir, en caso de que una aumente, la otra tiende a comportarse de la misma manera.

Para cada carga normal de 0.26, 0.40 y 0.54 kgf/cm² se obtuvieron valores entre 0.23-0.34, 0.34- 0.41 y 0,47- 0,50 Kgf/cm² (ver anexo XXII, XXIII y XXIV), respectivamente. Los valores son altos corresponde a los limos orgánicos (OL). Estos resultados permiten establecer que mientras la cohesión y el ángulo de fricción aumentan la resistencia al corte disminuye favoreciendo a los procesos erosivos del suelo.

Los resultados estadísticos de estos ensayos de Resistencia al corte, cohesión y Angulo de fricción fueron los siguientes

Resistencia al Corte Estado de Carga 5 Kg

Figura 48. Medias y 95% de FISHER y LCD para resistencia al corte estado de carga 5Kg. *Nota. Datos tomados de los resultados statgraphics*

Tabla 38. *Medias con intervalos de confianza del 95.0% para resistencia al corte estado de carga 5Kg.*

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	0.195333	0.0133795	0.175599	0.215068
Parcela_10	3	0.179667	0.0133795	0.159932	0.199401
Parcela_2	3	0.206667	0.0133795	0.186932	0.226401
Parcela_3	3	0.19	0.0133795	0.170265	0.209735
Parcela_4	3	0.195333	0.0133795	0.175599	0.215068
Parcela_5	3	0.187333	0.0133795	0.167599	0.207068
Parcela_6	3	0.171333	0.0133795	0.151599	0.191068
Parcela_7	3	0.18	0.0133795	0.160265	0.199735
Parcela_8	3	0.178	0.0133795	0.158265	0.197735
Parcela_9	3	0.155333	0.0133795	0.135599	0.175068
Total	30	0.1839			

Nota. Datos tomados de los resultados statgraphics.

Pruebas de Múltiple Rangos

Tabla 39. Método: 95.0 porcentaje LSD para resistencia al corte estado de carga 5Kg.

	Casos	Media	Grupos Homogéneos
Parcela_9	3	0.155333	Х
Parcela_6	3	0.171333	XX
Parcela_8	3	0.178	XX
Parcela_10	3	0.179667	XX
Parcela_7	3	0.18	XX
Parcela_5	3	0.187333	XX
Parcela_3	3	0.19	XX
Parcela_1	3	0.195333	Х
Parcela_4	3	0.195333	Х
Parcela_2	3	0.206667	Х

Nota. Datos tomados de los resultados statgraphics.

cion manpie para r	consier		siduo de ce
Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		0.0156667	0.0394696
Parcela_1 - Parcela_2		-0.0113333	0.0394696
Parcela_1 - Parcela_3		0.00533333	0.0394696
Parcela_1 - Parcela_4		0.0	0.0394696
Parcela_1 - Parcela_5		0.008	0.0394696
Parcela_1 - Parcela_6		0.024	0.0394696
Parcela_1 - Parcela_7		0.0153333	0.0394696
Parcela_1 - Parcela_8		0.0173333	0.0394696
Parcela_1 - Parcela_9	*	0.04	0.0394696
Parcela_10 - Parcela_2		-0.027	0.0394696
Parcela_10 - Parcela_3		-0.0103333	0.0394696
Parcela_10 - Parcela_4		-0.0156667	0.0394696
Parcela_10 - Parcela_5		-0.00766667	0.0394696
Parcela_10 - Parcela_6		0.00833333	0.0394696
Parcela_10 - Parcela_7		-0.000333333	0.0394696
Parcela_10 - Parcela_8		0.00166667	0.0394696
Parcela_10 - Parcela_9		0.0243333	0.0394696
Parcela_2 - Parcela_3		0.0166667	0.0394696
Parcela_2 - Parcela_4		0.0113333	0.0394696
Parcela_2 - Parcela_5		0.0193333	0.0394696
Parcela_2 - Parcela_6		0.0353333	0.0394696
Parcela_2 - Parcela_7		0.0266667	0.0394696
Parcela_2 - Parcela_8		0.0286667	0.0394696
Parcela_2 - Parcela_9	*	0.0513333	0.0394696
Parcela_3 - Parcela_4		-0.00533333	0.0394696
Parcela_3 - Parcela_5		0.00266667	0.0394696
Parcela_3 - Parcela_6		0.0186667	0.0394696
Parcela_3 - Parcela_7		0.01	0.0394696
Parcela_3 - Parcela_8		0.012	0.0394696
Parcela_3 - Parcela_9		0.0346667	0.0394696
Parcela_4 - Parcela_5		0.008	0.0394696
Parcela_4 - Parcela_6		0.024	0.0394696
Parcela_4 - Parcela_7		0.0153333	0.0394696
Parcela_4 - Parcela_8		0.0173333	0.0394696
Parcela_4 - Parcela_9	*	0.04	0.0394696
Parcela_5 - Parcela_6		0.016	0.0394696
Parcela_5 - Parcela_7		0.00733333	0.0394696
Parcela_5 - Parcela_8		0.00933333	0.0394696
Parcela_5 - Parcela_9		0.032	0.0394696
Parcela 6 - Parcela 7	1	-0.00866667	0.0394696

 Tabla 40. Comparación Múltiple para resistencia al corte estado de carga 5Kg.

Parcela_6 - Parcela_8		-0.00666667	0.0394696
Parcela_6 - Parcela_9		0.016	0.0394696
Parcela_7 - Parcela_8		0.002	0.0394696
Parcela_7 - Parcela_9		0.0246667	0.0394696
Parcela_8 - Parcela_9		0.0226667	0.0394696
	11.0		•

En los valores Niet & Bisten ciural don le con restal to des extregardes bistes, se han identificado 5 grupos homogéneos. Existen 26 pares que muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza. y se observa la existencia de variabilidad de las medias prácticamente entre todas las parcelas muestreadas.

Resistencia al Corte Estado de carga 10 Kg

Figura 49. Medias y 95% de FISHER y LCD Resistencia al Corte Estado de carga 10 Kg. Nota. Datos tomados de los resultados statgraphics.

Tabla 46. Medias con intervalos de confianza del 95.0% Resistencia al Corte Estado decarga 10 Kg

Lift Lit.

	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	0.283333	0.0151676	0.260961	0.305706
Parcela_10	3	0.263	0.0151676	0.240628	0.285372
Parcela_2	3	0.311667	0.0151676	0.289294	0.334039
Parcela_3	3	0.284	0.0151676	0.261628	0.306372
Parcela_4	3	0.285333	0.0151676	0.262961	0.307706
Parcela_5	3	0.251	0.0151676	0.228628	0.273372
Parcela_6	3	0.257	0.0151676	0.234628	0.279372
Parcela_7	3	0.233	0.0151676	0.210628	0.255372
Parcela_8	3	0.259667	0.0151676	0.237294	0.282039
Parcela_9	3	0.273333	0.0151676	0.250961	0.295706
Total	30	0.270133			

Nota. Datos tomados de los resultados statgraphics.

 Tabla 47. Método: 95.0 porcentaje LSD Resistencia al Corte Estado de carga 10Kg.

	Casos	Media	Grupos Homogéneos
Parcela_7	3	0.233	Х
Parcela_5	3	0.251	XX
Parcela_6	3	0.257	XX
Parcela_8	3	0.259667	XX
Parcela_10	3	0.263	XX
Parcela_9	3	0.273333	XXX
Parcela_1	3	0.283333	XX
Parcela_3	3	0.284	XX
Parcela_4	3	0.285333	XX
Parcela_2	3	0.311667	Х

Nota. Datos tomados de los resultados statgraphics.

 Tabla 48. Comparación Múltiple Resistencia al Corte Estado de carga 10 Kg

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		0.0203333	0.0447444
Parcela_1 - Parcela_2		-0.0283333	0.0447444
Parcela_1 - Parcela_3		-0.0006666667	0.0447444
Parcela_1 - Parcela_4		-0.002	0.0447444
Parcela_1 - Parcela_5		0.0323333	0.0447444
Parcela_1 - Parcela_6		0.0263333	0.0447444
Parcela_1 - Parcela_7	*	0.0503333	0.0447444
Parcela_1 - Parcela_8		0.0236667	0.0447444
Parcela_1 - Parcela_9		0.01	0.0447444
Parcela_10 - Parcela_2	*	-0.0486667	0.0447444
Parcela_10 - Parcela_3		-0.021	0.0447444

Parcela_10 - Parcela_4		-0.0223333	0.0447444
Parcela_10 - Parcela_5		0.012	0.0447444
Parcela_10 - Parcela_6		0.006	0.0447444
Parcela_10 - Parcela_7		0.03	0.0447444
Parcela_10 - Parcela_8		0.00333333	0.0447444
Parcela_10 - Parcela_9		-0.0103333	0.0447444
Parcela_2 - Parcela_3		0.0276667	0.0447444
Parcela_2 - Parcela_4		0.0263333	0.0447444
Parcela_2 - Parcela_5	*	0.0606667	0.0447444
Parcela_2 - Parcela_6	*	0.0546667	0.0447444
Parcela_2 - Parcela_7	*	0.0786667	0.0447444
Parcela_2 - Parcela_8	*	0.052	0.0447444
Parcela_2 - Parcela_9		0.0383333	0.0447444
Parcela_3 - Parcela_4		-0.00133333	0.0447444
Parcela_3 - Parcela_5		0.033	0.0447444
Parcela_3 - Parcela_6		0.027	0.0447444
Parcela_3 - Parcela_7	*	0.051	0.0447444
Parcela_3 - Parcela_8		0.0243333	0.0447444
Parcela_3 - Parcela_9		0.0106667	0.0447444
Parcela_4 - Parcela_5		0.0343333	0.0447444
Parcela_4 - Parcela_6		0.0283333	0.0447444
Parcela_4 - Parcela_7	*	0.0523333	0.0447444
Parcela_4 - Parcela_8		0.0256667	0.0447444
Parcela_4 - Parcela_9		0.012	0.0447444
Parcela_5 - Parcela_6		-0.006	0.0447444
Parcela_5 - Parcela_7		0.018	0.0447444
Parcela_5 - Parcela_8		-0.00866667	0.0447444
Parcela_5 - Parcela_9		-0.0223333	0.0447444
Parcela_6 - Parcela_7		0.024	0.0447444
Parcela_6 - Parcela_8		-0.00266667	0.0447444
Parcela_6 - Parcela_9		-0.0163333	0.0447444
Parcela_7 - Parcela_8		-0.0266667	0.0447444
Parcela_7 - Parcela_9		-0.0403333	0.0447444
Parcela_8 - Parcela_9		-0.0136667	0.0447444

En los valores Mar Resisten cianal dos rate con restata des sanger de hios Kg, se han identificado 3 grupos homogéneos (Ver Tabla 47). Existen 14 pares que muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza. (Ver Tabla 48) y se observa que las parcelas con asteriscos presentan una variabilidad media significativa según lo identifica el programa.

Resistencia al Corte Estado de carga 15 Kg.

Figura 50. Medias y 95% de FISHER y LCD Resistencia al Corte Estado de carga 15 Kg. Nota. Datos tomados de los resultados statgraphics.

Tabla 41. *Medias con intervalos de confianza del 95.0% Resistencia al Corte Estado de carga 15 Kg.*

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	0.356667	0.0462067	0.288512	0.424822
Parcela_10	3	0.365333	0.0462067	0.297178	0.433488
Parcela_2	3	0.378667	0.0462067	0.310512	0.446822
Parcela_3	3	0.369333	0.0462067	0.301178	0.437488
Parcela_4	3	0.364	0.0462067	0.295845	0.432155
Parcela_5	3	0.270667	0.0462067	0.202512	0.338822
Parcela_6	3	0.353	0.0462067	0.284845	0.421155
Parcela_7	3	0.279667	0.0462067	0.211512	0.347822
Parcela_8	3	0.338667	0.0462067	0.270512	0.406822
Parcela_9	3	0.278667	0.0462067	0.210512	0.346822
Total	30	0.335467			

Nota. Datos tomados de los resultados statgraphics.

	Casos	Media	Grupos Homogéneos
Parcela_5	3	0.270667	Х
Parcela_9	3	0.278667	Х
Parcela_7	3	0.279667	Х
Parcela_8	3	0.338667	Х
Parcela_6	3	0.353	Х
Parcela_1	3	0.356667	Х
Parcela_4	3	0.364	Х
Parcela_10	3	0.365333	Х
Parcela_3	3	0.369333	Х
Parcela_2	3	0.378667	Х

 Tabla 42. Método: 95.0 porcentaje LSD Resistencia al Corte Estado de carga 15 Kg.

Nota. Datos tomados de los resultados stats	graphics	s.
---	----------	----

Tabla 43.	Compar	ación l	Múltiple	Resistenc	ia al C	Corte I	Estado d	le carga	15 Kg
									0

<u></u>			
Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		-0.00866667	0.13631
Parcela_1 - Parcela_2		-0.022	0.13631
Parcela_1 - Parcela_3		-0.0126667	0.13631
Parcela_1 - Parcela_4		-0.00733333	0.13631
Parcela_1 - Parcela_5		0.086	0.13631
Parcela_1 - Parcela_6		0.00366667	0.13631
Parcela_1 - Parcela_7		0.077	0.13631
Parcela_1 - Parcela_8		0.018	0.13631
Parcela_1 - Parcela_9		0.078	0.13631
Parcela_10 - Parcela_2		-0.0133333	0.13631
Parcela_10 - Parcela_3		-0.004	0.13631
Parcela_10 - Parcela_4		0.00133333	0.13631
Parcela_10 - Parcela_5		0.0946667	0.13631
Parcela_10 - Parcela_6		0.0123333	0.13631
Parcela_10 - Parcela_7		0.0856667	0.13631
Parcela_10 - Parcela_8		0.0266667	0.13631
Parcela_10 - Parcela_9		0.0866667	0.13631
Parcela_2 - Parcela_3		0.00933333	0.13631
Parcela_2 - Parcela_4		0.0146667	0.13631
Parcela_2 - Parcela_5		0.108	0.13631
Parcela_2 - Parcela_6		0.0256667	0.13631
Parcela_2 - Parcela_7		0.099	0.13631
Parcela_2 - Parcela_8		0.04	0.13631
Parcela_2 - Parcela_9		0.1	0.13631
Parcela_3 - Parcela_4		0.00533333	0.13631
Parcela_3 - Parcela_5		0.0986667	0.13631
Parcela_3 - Parcela_6		0.0163333	0.13631
Parcela_3 - Parcela_7		0.0896667	0.13631
Parcela_3 - Parcela_8		0.0306667	0.13631

Parcela_3 - Parcela_9	0.0906667	0.13631
Parcela_4 - Parcela_5	0.0933333	0.13631
Parcela_4 - Parcela_6	0.011	0.13631
Parcela_4 - Parcela_7	0.0843333	0.13631
Parcela_4 - Parcela_8	0.0253333	0.13631
Parcela_4 - Parcela_9	0.0853333	0.13631
Parcela_5 - Parcela_6	-0.0823333	0.13631
Parcela_5 - Parcela_7	-0.009	0.13631
Parcela_5 - Parcela_8	-0.068	0.13631
Parcela_5 - Parcela_9	-0.008	0.13631
Parcela_6 - Parcela_7	0.0733333	0.13631
Parcela_6 - Parcela_8	0.0143333	0.13631
Parcela_6 - Parcela_9	0.0743333	0.13631
Parcela_7 - Parcela_8	-0.059	0.13631
Parcela_7 - Parcela_9	0.001	0.13631
Parcela_8 - Parcela_9	0.06	0.13631
* indiaa una difa	ancie cionificati	

En los valores Mar Resistencianal dos rate ton restalla des sauger de his sky, se han identificado 5 grupos homogéneos. Existen 18 pares que muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza, y se observa la existencia de variabilidad de las medias prácticamente entre todas las parcelas muestreadas.

Cohesión.

Figura 51. **Medias y 95% de FISHER y LCD para la cohesión.** Nota. Datos tomados de los resultados statgraphics.

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	0.055	0.0152107	0.0325641	0.0774359
Parcela_10	3	0.0566667	0.0152107	0.0342308	0.0791025
Parcela_2	3	0.0653333	0.0152107	0.0428975	0.0877692
Parcela_3	3	0.055	0.0152107	0.0325641	0.0774359
Parcela_4	3	0.0696667	0.0152107	0.0472308	0.0921025
Parcela_5	3	0.0226667	0.0152107	0.000230792	0.0451025
Parcela_6	3	0.0466667	0.0152107	0.0242308	0.0691025
Parcela_7	3	0.0376667	0.0152107	0.0152308	0.0601025
Parcela_8	3	0.03	0.0152107	0.00756413	0.0524359
Parcela_9	3	0.026	0.0152107	0.00356413	0.0484359
Total	30	0.0464667			

Tabla 44. Medias con intervalos de confianza del 95.0% para la cohesión.

Nota. Datos tomados de los resultados statgraphics.

Tabla 45. Método:	95.0 porcentaje LSD	para la cohesión.
-------------------	---------------------	-------------------

	Casos	Media	Grupos Homogéneos
Parcela_5	3	0.0226667	Х
Parcela_9	3	0.026	XX
Parcela_8	3	0.03	XX
Parcela_7	3	0.0376667	XX
Parcela_6	3	0.0466667	XX
Parcela_3	3	0.055	XX
Parcela_1	3	0.055	XX
Parcela_10	3	0.0566667	XX
Parcela_2	3	0.0653333	XX
Parcela_4	3	0.0696667	Х

Nota. Datos tomados de los resultados statgraphics.

Tabla 46. Comparación Múltiple para la cohesión.

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		-0.00166667	0.0448717

Parcela_1 - Parcela_2		-0.0103333	0.0448717
Parcela_1 - Parcela_3		0.0	0.0448717
Parcela_1 - Parcela_4		-0.0146667	0.0448717
Parcela_1 - Parcela_5		0.0323333	0.0448717
Parcela 1 - Parcela 6		0.00833333	0.0448717
Parcela_1 - Parcela_7		0.0173333	0.0448717
Parcela 1 - Parcela 8		0.025	0.0448717
Parcela_1 - Parcela_9		0.029	0.0448717
Parcela_10 - Parcela_2		-0.00866667	0.0448717
Parcela_10 - Parcela_3		0.00166667	0.0448717
Parcela_10 - Parcela_4		-0.013	0.0448717
Parcela_10 - Parcela_5		0.034	0.0448717
Parcela_10 - Parcela_6		0.01	0.0448717
Parcela_10 - Parcela_7		0.019	0.0448717
Parcela_10 - Parcela_8		0.0266667	0.0448717
Parcela_10 - Parcela_9		0.0306667	0.0448717
Parcela_2 - Parcela_3		0.0103333	0.0448717
Parcela 2 - Parcela 4		-0.00433333	0.0448717
Parcela_2 - Parcela_5		0.0426667	0.0448717
Parcela_2 - Parcela_6		0.0186667	0.0448717
Parcela_2 - Parcela_7		0.0276667	0.0448717
Parcela_2 - Parcela_8		0.0353333	0.0448717
Parcela_2 - Parcela_9		0.0393333	0.0448717
Parcela_3 - Parcela_4		-0.0146667	0.0448717
Parcela_3 - Parcela_5		0.0323333	0.0448717
Parcela_3 - Parcela_6		0.00833333	0.0448717
Parcela_3 - Parcela_7		0.0173333	0.0448717
Parcela_3 - Parcela_8		0.025	0.0448717
Parcela_3 - Parcela_9		0.029	0.0448717
Parcela_4 - Parcela_5	*	0.047	0.0448717
Parcela_4 - Parcela_6		0.023	0.0448717
Parcela_4 - Parcela_7		0.032	0.0448717
Parcela_4 - Parcela_8		0.0396667	0.0448717
Parcela_4 - Parcela_9		0.0436667	0.0448717
Parcela_5 - Parcela_6		-0.024	0.0448717
Parcela_5 - Parcela_7		-0.015	0.0448717
Parcela_5 - Parcela_8		-0.00733333	0.0448717
Parcela_5 - Parcela_9		-0.00333333	0.0448717
Parcela_6 - Parcela_7		0.009	0.0448717
Parcela_6 - Parcela_8		0.0166667	0.0448717
Parcela_6 - Parcela_9		0.0206667	0.0448717
Parcela_7 - Parcela_8		0.00766667	0.0448717
Parcela_7 - Parcela_9		0.0116667	0.0448717
Parcela_8 - Parcela_9		0.004	0.0448717

En los valores de Consistence de la consistence

porcentajes de arena presentes en la muestra, lo que nos hace caraterizar la muestra en limos orgánicos con presencia de arena.

Ángulo de Fricción.

Figura 52. Medias y 95% de FISHER y LCD para Ángulo de fricción. Nota. Datos tomados de los resultados statgraphics.

Tabla 47. Medias con intervalos de confianza del 95.0% para Ángulo de fricción.

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	29.3333	0.68313	28.3257	30.341
Parcela_10	3	29.6667	0.68313	28.659	30.6743
Parcela_2	3	30.0	0.68313	28.9924	31.0076
Parcela_3	3	30.0	0.68313	28.9924	31.0076
Parcela_4	3	29.0	0.68313	27.9924	30.0076
Parcela_5	3	30.6667	0.68313	29.659	31.6743
Parcela_6	3	29.3333	0.68313	28.3257	30.341
Parcela_7	3	29.6667	0.68313	28.659	30.6743
Parcela_8	3	30.0	0.68313	28.9924	31.0076
Parcela_9	3	30.6667	0.68313	29.659	31.6743
Total	30	29.8333			

Nota. Datos tomados de los resultados statgraphics.

Pruebas de Múltiple Rangos

Tabla 48. Método: 95.0 porcentaje LSD para Ángulo de fricción

	Casos	Media	Grupos Homogéneos
Parcela_4	3	29.0	Х
Parcela_6	3	29.3333	Х
Parcela_1	3	29.3333	Х
Parcela_10	3	29.6667	Х
Parcela_7	3	29.6667	Х
Parcela_2	3	30.0	Х
Parcela_8	3	30.0	Х
Parcela_3	3	30.0	Х
Parcela_5	3	30.6667	Х
Parcela_9	3	30.6667	Х

Nota. Datos tomados de los resultados statgraphics

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		-0.333333	2.01524
Parcela_1 - Parcela_2		-0.666667	2.01524
Parcela_1 - Parcela_3		-0.666667	2.01524
Parcela_1 - Parcela_4		0.333333	2.01524
Parcela_1 - Parcela_5		-1.33333	2.01524
Parcela_1 - Parcela_6		0.0	2.01524
Parcela_1 - Parcela_7		-0.333333	2.01524
Parcela_1 - Parcela_8		-0.666667	2.01524
Parcela_1 - Parcela_9		-1.33333	2.01524
Parcela_10 - Parcela_2		-0.333333	2.01524
Parcela_10 - Parcela_3		-0.333333	2.01524
Parcela_10 - Parcela_4		0.666667	2.01524
Parcela_10 - Parcela_5		-1.0	2.01524
Parcela_10 - Parcela_6		0.333333	2.01524
Parcela_10 - Parcela_7		0.0	2.01524
Parcela_10 - Parcela_8		-0.333333	2.01524
Parcela_10 - Parcela_9		-1.0	2.01524
Parcela_2 - Parcela_3		0.0	2.01524
Parcela_2 - Parcela_4		1.0	2.01524
Parcela_2 - Parcela_5		-0.666667	2.01524
Parcela_2 - Parcela_6		0.666667	2.01524
Parcela_2 - Parcela_7		0.333333	2.01524
Parcela_2 - Parcela_8		0.0	2.01524

Tabla 49. Comparación Múltiple para Ángulo de fricción

Parcela_2 - Parcela_9		-0.666667	2.01524
Parcela_3 - Parcela_4		1.0	2.01524
Parcela_3 - Parcela_5		-0.666667	2.01524
Parcela_3 - Parcela_6		0.666667	2.01524
Parcela_3 - Parcela_7		0.333333	2.01524
Parcela_3 - Parcela_8		0.0	2.01524
Parcela_3 - Parcela_9		-0.666667	2.01524
Parcela_4 - Parcela_5		-1.66667	2.01524
Parcela_4 - Parcela_6		-0.333333	2.01524
Parcela_4 - Parcela_7		-0.666667	2.01524
Parcela_4 - Parcela_8		-1.0	2.01524
Parcela_4 - Parcela_9		-1.66667	2.01524
Parcela_5 - Parcela_6		1.33333	2.01524
Parcela_5 - Parcela_7		1.0	2.01524
Parcela_5 - Parcela_8		0.666667	2.01524
Parcela_5 - Parcela_9		0.0	2.01524
Parcela_6 - Parcela_7		-0.333333	2.01524
Parcela_6 - Parcela_8		-0.666667	2.01524
Parcela_6 - Parcela_9		-1.33333	2.01524
Parcela_7 - Parcela_8		-0.3333333	2.01524
Parcela_7 - Parcela_9		-1.0	2.01524
Parcela_8 - Parcela_9		-0.666667	2.01524
	-		

En los valorevode Dangulandad Frideitos, resultantoidentificaplaic A grupos homogéneos. Existen 9 pares que muestran diferencias estadísticamente no significativas con un nivel del 95.0% de confianza, y se observa que en todas las parcelas presentan variabilidades muy bajas de las medias.

El ángulo de fricción es un parámetro del suelo que está relacionado con la forma y tamaño del grano, los suelos de grano fino, como es el caso, por lo general presentan ángulos de fricción bajos, Braja Das señala que este parámetro para un suelo limoso es de 15°; los ensayos de corte realizados a las muestras arrojaron como resultados ángulos de fricción en un rango de 28° a 32° los cuales están muy por encima de lo indicado por el autor (Braja Das), esta diferencia significativa que arrojan los ensayos viene influencia mayormente por los contenidos de arena presentes en las muestras.

Las relaciones de fases del suelo determinadas fueron la porosidad, el contenido de humedad, la gravedad específica y la relación de vacíos. La porosidad determinada en la zona varió entre 0,40 y 0,57. (Ver Anexo XVIII) la relación de vacíos presentada se encuentra entre 0.67- 0.88, 0.89- 1.10 y 1.11- 1.31 (Ver Anexo XIX), y con respecto al contenido de humedad de sitio, éste se encuentra en rangos comprendidos entre (12.65-

20,82), (20.82-29) y (29.01-37.17), en donde el valor máximo se debe a imprevistos de lluvia en días de muestreo de puntos (ver anexo VII).

Se puede decir que la permeabilidad del suelo esta relacionada directamente con la relación de vacíos. A mayor permeabilidad mayor relación de vacíos, por lo que el suelo presenta poros grandes y numerosos (Ver Figura 53) que permiten el transporte del agua y del aire a través del suelo

Figura 53. Relación Permeabilidad vs relación de vacíos. Lambe y Whitman. (1994)

Figura 54. Permeabilidad vs Relacion de vacios. Fuente: Araujo. J; Mata. F (2009).

Según la grafica presentada por Lambe y whitman (1994), para valores de permeabilidad entre 10^{-6} y 10^{-4} , y valores de relación de vacio entre 0.1 y 0.25, son característicos de un limo-North Carolina lo cual se asemeja a nuestra clasificación.

Se obtuvo una relación entre el esfuerzo crítico ($\tau_{crítico}$) y el tamaño de partícula medio (D₅₀), la cual expresa que son directamente proporcionales, a medida que D₅₀ aumenta el esfuerzo crítico del suelo se hace mayor tendiendo a comportándose forma lineal. Esta relación se puede confirmar mediante la grafica de la Figura 82.

Figura 55. Relación Esfuerzo Crítico Vs. d₅₀. Pierre Y. Julien (1995)

Los resultados estadísticos arrojados por STATGRAPHICS CENTURIN XV de estos ensayos de porosidad y relación de vacío y permeabilidad fueron los que se muestran a continuación siguientes:

Porosidad.

En los valores de Porosidad, se a identificado un solo grupo homogéneos (Ver Tabla 59). Y no existe pares que muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza. (Ver Tabla 60).

Figura 57. **Medias y 95% de FISHER y LCD para Porosidad.** Nota. Datos tomados de los resultados statgraphics.

 Tabla 50. Medias con intervalos de confianza del 95.0 para Porosidad.

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	0.173333	0.0316403	0.126664	0.220003
Parcela_10	3	0.196667	0.0316403	0.149997	0.243336
Parcela_2	3	0.17	0.0316403	0.12333	0.21667

Parcela_3	3	0.17	0.0316403	0.12333	0.21667
Parcela_4	3	0.126667	0.0316403	0.0799971	0.173336
Parcela_5	3	0.113333	0.0316403	0.0666638	0.160003
Parcela_6	3	0.103333	0.0316403	0.0566638	0.150003
Parcela_7	3	0.133333	0.0316403	0.0866638	0.180003
Parcela_8	3	0.146667	0.0316403	0.0999971	0.193336
Parcela_9	3	0.12	0.0316403	0.0733304	0.16667
Total	30	0.145333			

Fuente: Araujo. J; Mata. F (2009).

Tabla 51. Método: 95	5.0 porcentaje	LSD para	Porosidad.
----------------------	----------------	----------	------------

	Casos	Media	Grupos Homogéneos
Parcela_6	3	0.103333	Х
Parcela_5	3	0.113333	Х
Parcela_9	3	0.12	Х
Parcela_4	3	0.126667	Х
Parcela_7	3	0.133333	Х
Parcela_8	3	0.146667	Х
Parcela_2	3	0.17	Х
Parcela_3	3	0.17	Х
Parcela_1	3	0.173333	Х
Parcela_10	3	0.196667	Х
-			

Nota. Datos tomados de los resultados statgraphics.

 Tabla 52. Comparación Múltiple para Porosidad.

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		-0.0233333	0.0933391
Parcela_1 - Parcela_2		0.00333333	0.0933391
Parcela_1 - Parcela_3		0.00333333	0.0933391
Parcela_1 - Parcela_4		0.0466667	0.0933391
Parcela_1 - Parcela_5		0.06	0.0933391
Parcela_1 - Parcela_6		0.07	0.0933391
Parcela_1 - Parcela_7		0.04	0.0933391
Parcela_1 - Parcela_8		0.0266667	0.0933391
Parcela_1 - Parcela_9		0.0533333	0.0933391
Parcela_10 - Parcela_2		0.0266667	0.0933391
Parcela_10 - Parcela_3		0.0266667	0.0933391
Parcela_10 - Parcela_4		0.07	0.0933391
Parcela_10 - Parcela_5		0.0833333	0.0933391
Parcela_10 - Parcela_6		0.0933333	0.0933391
Parcela_10 - Parcela_7		0.0633333	0.0933391
Parcela_10 - Parcela_8		0.05	0.0933391

Parcela_10 - Parcela_9	0.0766667	0.0933391
Parcela_2 - Parcela_3	0.0	0.0933391
Parcela_2 - Parcela_4	0.0433333	0.0933391
Parcela_2 - Parcela_5	0.0566667	0.0933391
Parcela_2 - Parcela_6	0.0666667	0.0933391
Parcela_2 - Parcela_7	0.0366667	0.0933391
Parcela_2 - Parcela_8	0.0233333	0.0933391
Parcela_2 - Parcela_9	0.05	0.0933391
Parcela_3 - Parcela_4	0.0433333	0.0933391
Parcela_3 - Parcela_5	0.0566667	0.0933391
Parcela_3 - Parcela_6	0.0666667	0.0933391
Parcela_3 - Parcela_7	0.0366667	0.0933391
Parcela_3 - Parcela_8	0.0233333	0.0933391
Parcela_3 - Parcela_9	0.05	0.0933391
Parcela_4 - Parcela_5	0.0133333	0.0933391
Parcela_4 - Parcela_6	0.0233333	0.0933391
Parcela_4 - Parcela_7	-0.00666667	0.0933391
Parcela_4 - Parcela_8	-0.02	0.0933391
Parcela_4 - Parcela_9	0.00666667	0.0933391
Parcela_5 - Parcela_6	0.01	0.0933391
Parcela_5 - Parcela_7	-0.02	0.0933391
Parcela_5 - Parcela_8	-0.0333333	0.0933391
Parcela_5 - Parcela_9	-0.006666667	0.0933391
Parcela_6 - Parcela_7	-0.03	0.0933391
Parcela_6 - Parcela_8	-0.0433333	0.0933391
Parcela_6 - Parcela_9	-0.0166667	0.0933391
Parcela_7 - Parcela_8	-0.0133333	0.0933391
Parcela_7 - Parcela_9	0.0133333	0.0933391
Parcela_8 - Parcela_9	0.0266667	0.0933391

% Humedad Iniciala. Datos tomados de los resultados statgraphics.

En los valores de porcentaje de Humedad Inicial, se han identificado 3 grupos homogéneos. Existen 16 pares que muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza, y se observa que en mayorías de las parcelas presentan variabilidad de las medias.

Figura 58. Medias y 95% de FISHER y LCD para % de Humedad inicial. Nota. Datos tomados de los resultados statgraphics.

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	7.97667	1.7832	5.34644	10.6069
Parcela_10	3	9.93333	1.7832	7.3031	12.5636
Parcela_2	3	8.25333	1.7832	5.6231	10.8836
Parcela_3	3	7.73333	1.7832	5.1031	10.3636
Parcela_4	3	6.01	1.7832	3.37977	8.64023
Parcela_5	3	5.00667	1.7832	2.37644	7.6369
Parcela_6	3	4.67	1.7832	2.03977	7.30023
Parcela_7	3	5.98667	1.7832	3.35644	8.6169
Parcela_8	3	7.02	1.7832	4.38977	9.65023
Parcela_9	3	5.29	1.7832	2.65977	7.92023
Total	30	6.788			

 Tabla 53. Medias con intervalos de confianza del 95.0% para % de Humedad inicial.

Nota. Datos tomados de los resultados statgraphics.

	Casos	Media	Grupos Homogéneos
Parcela_6	3	4.67	Х
Parcela_5	3	5.00667	XX
Parcela_9	3	5.29	XX
Parcela_7	3	5.98667	XX
Parcela_4	3	6.01	XX
Parcela_8	3	7.02	XX
Parcela_3	3	7.73333	XX
Parcela_1	3	7.97667	XX
Parcela_2	3	8.25333	XX
Demasle 10	2	0.02222	V

Tabla 54. Método: 95.0 porcentaje LSD para % de Humedad inicial

 Parcela_10
 3
 9.93333
 ×

 Nota. Datos tomados de los resultados statgraphics.

Tabla 55. (Comparación M	ltiple para	a % de Humea	lad inicial.
-------------	---------------	-------------	--------------	--------------

r r r r r r r r r r r r r r r r r r r			
Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		-1.95667	5.26046
Parcela_1 - Parcela_2		-0.276667	5.26046
Parcela_1 - Parcela_3		0.243333	5.26046
Parcela_1 - Parcela_4		1.96667	5.26046
Parcela_1 - Parcela_5		2.97	5.26046
Parcela_1 - Parcela_6		3.30667	5.26046
Parcela_1 - Parcela_7		1.99	5.26046
Parcela_1 - Parcela_8		0.956667	5.26046
Parcela_1 - Parcela_9		2.68667	5.26046
Parcela_10 - Parcela_2		1.68	5.26046
Parcela_10 - Parcela_3		2.2	5.26046
Parcela_10 - Parcela_4		3.92333	5.26046
Parcela_10 - Parcela_5		4.92667	5.26046
Parcela_10 - Parcela_6	*	5.26333	5.26046
Parcela_10 - Parcela_7		3.94667	5.26046
Parcela_10 - Parcela_8		2.91333	5.26046
Parcela_10 - Parcela_9		4.64333	5.26046
Parcela_2 - Parcela_3		0.52	5.26046
Parcela_2 - Parcela_4		2.24333	5.26046
Parcela_2 - Parcela_5		3.24667	5.26046
Parcela_2 - Parcela_6		3.58333	5.26046
Parcela_2 - Parcela_7		2.26667	5.26046
Parcela_2 - Parcela_8		1.23333	5.26046

Parcela_2 - Parcela_9	2.96333	5.26046
Parcela_3 - Parcela_4	1.72333	5.26046
Parcela_3 - Parcela_5	2.72667	5.26046
Parcela_3 - Parcela_6	3.06333	5.26046
Parcela_3 - Parcela_7	1.74667	5.26046
Parcela_3 - Parcela_8	0.713333	5.26046
Parcela_3 - Parcela_9	2.44333	5.26046
Parcela_4 - Parcela_5	1.00333	5.26046
Parcela_4 - Parcela_6	1.34	5.26046
Parcela_4 - Parcela_7	0.0233333	5.26046
Parcela_4 - Parcela_8	-1.01	5.26046
Parcela_4 - Parcela_9	0.72	5.26046
Parcela_5 - Parcela_6	0.336667	5.26046
Parcela_5 - Parcela_7	-0.98	5.26046
Parcela_5 - Parcela_8	-2.01333	5.26046
Parcela_5 - Parcela_9	-0.283333	5.26046
Parcela_6 - Parcela_7	-1.31667	5.26046
Parcela_6 - Parcela_8	-2.35	5.26046
Parcela_6 - Parcela_9	-0.62	5.26046
Parcela_7 - Parcela_8	-1.03333	5.26046
Parcela_7 - Parcela_9	0.696667	5.26046
Parcela_8 - Parcela_9	1.73	5.26046

El contenide de la contenide de la contenidad de estos valores en días de la contenidad de contenidad de la contenidad de la

Relación de Vacío.

En los valores de Relación de Vacios, se identifico un solo grupo homogéneo (Ver tabla 65). No hay diferencias estadísticamente significativas entre cualquier par de medias, con un nivel del 95.0% de confianza, y se observa que las parcelas 5, 7, 8. 9 y 10 no presentan variabilidad de las medias, mientras que las parcelas restantes presentan variabilidad. (Ver Figura 59)

Figura 59. Medias y 95% de FISHER y LCD para Relación de Vacios. Martin. V; Ferrari. L (2009)

Tabla 56. Medias con intervalos de confia	anza del 95.0% para Relación de Vacios
---	--

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	0.21	0.0466905	0.141131	0.278869
Parcela_10	3	0.256667	0.0466905	0.187798	0.325535
Parcela_2	3	0.206667	0.0466905	0.137798	0.275535
Parcela_3	3	0.2	0.0466905	0.131131	0.268869
Parcela_4	3	0.15	0.0466905	0.0811315	0.218869
Parcela_5	3	0.13	0.0466905	0.0611315	0.198869
Parcela_6	3	0.116667	0.0466905	0.0477981	0.185535
Parcela_7	3	0.153333	0.0466905	0.0844648	0.222202
Parcela_8	3	0.173333	0.0466905	0.104465	0.242202
Parcela_9	3	0.136667	0.0466905	0.0677981	0.205535
Total	30	0.173333			

Nota. Datos tomados de los resultados statgraphics.

Tabla 57. Método: 95.0 porcentaje LSD para Relación de Vacios.

	Casos	Media	Grupos Homogéneos
Parcela_6	3	0.116667	Х
Parcela_5	3	0.13	XX
Parcela_9	3	0.136667	XX
Parcela_4	3	0.15	XX

Parcela_7	3	0.153333	XX
Parcela_8	3	0.173333	XX
Parcela_3	3	0.2	XX
Parcela_2	3	0.206667	XX
Parcela_1	3	0.21	XX
Parcela_10	3	0.256667	Х

Nota. Datos tomados de los resultados statgraphics.

Tabla 58. Comparación Múltiple para Relación de Vacios.

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		-0.0466667	0.137737
Parcela_1 - Parcela_2		0.00333333	0.137737
Parcela_1 - Parcela_3		0.01	0.137737
Parcela_1 - Parcela_4		0.06	0.137737
Parcela_1 - Parcela_5		0.08	0.137737
Parcela_1 - Parcela_6		0.0933333	0.137737
Parcela_1 - Parcela_7		0.0566667	0.137737
Parcela_1 - Parcela_8		0.0366667	0.137737
Parcela_1 - Parcela_9		0.0733333	0.137737
Parcela_10 - Parcela_2		0.05	0.137737
Parcela_10 - Parcela_3		0.0566667	0.137737
Parcela_10 - Parcela_4		0.106667	0.137737
Parcela_10 - Parcela_5		0.126667	0.137737
Parcela_10 - Parcela_6	*	0.14	0.137737
Parcela_10 - Parcela_7		0.103333	0.137737
Parcela_10 - Parcela_8		0.0833333	0.137737
Parcela_10 - Parcela_9		0.12	0.137737
Parcela_2 - Parcela_3		0.00666667	0.137737
Parcela_2 - Parcela_4		0.0566667	0.137737
Parcela_2 - Parcela_5		0.0766667	0.137737
Parcela_2 - Parcela_6		0.09	0.137737
Parcela_2 - Parcela_7		0.0533333	0.137737
Parcela_2 - Parcela_8		0.0333333	0.137737
Parcela_2 - Parcela_9		0.07	0.137737
Parcela_3 - Parcela_4		0.05	0.137737
Parcela_3 - Parcela_5		0.07	0.137737
Parcela_3 - Parcela_6		0.0833333	0.137737
Parcela_3 - Parcela_7		0.0466667	0.137737
Parcela_3 - Parcela_8		0.0266667	0.137737
Parcela_3 - Parcela_9		0.0633333	0.137737
Parcela_4 - Parcela_5		0.02	0.137737
Parcela_4 - Parcela_6		0.0333333	0.137737
Parcela_4 - Parcela_7		-0.00333333	0.137737
Parcela_4 - Parcela_8		-0.0233333	0.137737
Parcela_4 - Parcela_9		0.0133333	0.137737
Parcela_5 - Parcela_6		0.0133333	0.137737
Parcela_5 - Parcela_7		-0.0233333	0.137737
Parcela_5 - Parcela_8		-0.0433333	0.137737

Parcela_5 - Parcela_9	-0.00666667	0.137737
Parcela_6 - Parcela_7	-0.0366667	0.137737
Parcela_6 - Parcela_8	-0.0566667	0.137737
Parcela_6 - Parcela_9	-0.02	0.137737
Parcela_7 - Parcela_8	-0.02	0.137737
Parcela_7 - Parcela_9	0.0166667	0.137737
Parcela_8 - Parcela_9	0.0366667	0.137737

Permeabilidad. *Nota. Datos tomados de los resultados statgraphics.*

En los valores de Permeabilidad, se identifico 3 grupos homogéneos. Existen 29 pares que muestran diferencias estadísticamente significativas con un nivel del 95.0% de confianza, y se observan que Las parcelas se podrían dividir en dos grupos (2-3) y (8-9-10), debido a que las parcelas que se encuentran en ellos no presentan variabilidad, pero si existe diferencias entre ambos grupos, el resto de las parcelas presentan variabilidad.

Figura 60. Medias y 95% de FISHER y LCD para Permeabilidad. Martin. V; Ferrari. L (2009)

 Tabla 59. Medias con intervalos de confianza del 95.0% para Permeabilidad.

			Error Est.		
	Casos	Media	(s agrupada)	Límite Inferior	Límite Superior
Parcela_1	3	2.52333	4.34837	-3.89052	8.93719
Parcela_10	3	3.29333	4.34837	-3.12052	9.70719
Parcela_2	3	2.94333	4.34837	-3.47052	9.35719
Parcela_3	3	2.81	4.34837	-3.60386	9.22386
Parcela_4	3	3.40333	4.34837	-3.01052	9.81719
Parcela_5	3	13.9967	4.34837	7.58281	20.4105
Parcela_6	3	2.23333	4.34837	-4.18052	8.64719
Parcela_7	3	8.89333	4.34837	2.47948	15.3072
Parcela_8	3	3.43	4.34837	-2.98386	9.84386
Parcela_9	3	6.96333	4.34837	0.549475	13.3772
Total	30	5.049			

Nota. Datos tomados de los resultados statgraphics.

Pruebas de Múltiple Rangos

	Casos	Media	Grupos Homogéneos
Parcela_6	3	2.23333	Х
Parcela_1	3	2.52333	Х
Parcela_3	3	2.81	Х
Parcela_2	3	2.94333	Х
Parcela_10	3	3.29333	Х
Parcela_4	3	3.40333	Х
Parcela_8	3	3.43	Х
Parcela_9	3	6.96333	Х
Parcela_7	3	8.89333	Х
Parcela_5	3	13.9967	Х

 Tabla 60. Método: 95.0 porcentaje LSD para Permeabilidad.

Nota. Datos tomados de los resultados statgraphics.

Tabla 61. Comparación Múltiple para Permeabilidad.

Contraste	Sig.	Diferencia	+/- Límites
Parcela_1 - Parcela_10		-0.77	12.8277
Parcela_1 - Parcela_2		-0.42	12.8277
Parcela_1 - Parcela_3		-0.286667	12.8277
Parcela_1 - Parcela_4		-0.88	12.8277
Parcela_1 - Parcela_5		-11.4733	12.8277
Parcela_1 - Parcela_6		0.29	12.8277
Parcela_1 - Parcela_7		-6.37	12.8277
Parcela_1 - Parcela_8		-0.906667	12.8277
Parcela_1 - Parcela_9		-4.44	12.8277
Parcela_10 - Parcela_2		0.35	12.8277
Parcela_10 - Parcela_3		0.483333	12.8277
Parcela_10 - Parcela_4		-0.11	12.8277

Parcela_10 - Parcela_5	-10.7033	12.8277
Parcela_10 - Parcela_6	1.06	12.8277
Parcela_10 - Parcela_7	-5.6	12.8277
Parcela_10 - Parcela_8	-0.136667	12.8277
Parcela_10 - Parcela_9	-3.67	12.8277
Parcela_2 - Parcela_3	0.133333	12.8277
Parcela_2 - Parcela_4	-0.46	12.8277
Parcela_2 - Parcela_5	-11.0533	12.8277
Parcela_2 - Parcela_6	0.71	12.8277
Parcela_2 - Parcela_7	-5.95	12.8277
Parcela_2 - Parcela_8	-0.486667	12.8277
Parcela_2 - Parcela_9	-4.02	12.8277
Parcela_3 - Parcela_4	-0.593333	12.8277
Parcela_3 - Parcela_5	-11.1867	12.8277
Parcela_3 - Parcela_6	0.576667	12.8277
Parcela_3 - Parcela_7	-6.08333	12.8277
Parcela_3 - Parcela_8	-0.62	12.8277
Parcela_3 - Parcela_9	-4.15333	12.8277
Parcela_4 - Parcela_5	-10.5933	12.8277
Parcela_4 - Parcela_6	1.17	12.8277
Parcela_4 - Parcela_7	-5.49	12.8277
Parcela_4 - Parcela_8	-0.0266667	12.8277
Parcela_4 - Parcela_9	-3.56	12.8277
Parcela_5 - Parcela_6	11.7633	12.8277
Parcela_5 - Parcela_7	5.10333	12.8277
Parcela_5 - Parcela_8	10.5667	12.8277
Parcela_5 - Parcela_9	7.03333	12.8277
Parcela_6 - Parcela_7	-6.66	12.8277
Parcela_6 - Parcela_8	-1.19667	12.8277
Parcela_6 - Parcela_9	-4.73	12.8277
Parcela_7 - Parcela_8	5.46333	12.8277
Parcela_7 - Parcela_9	1.93	12.8277
Parcela_8 - Parcela_9	-3.53333	12.8277

La permeabilidad arrojón resultado sos tresultado sos tresultado sos las de graps de se puede decir que la permeabilidad de limo orgánico es muy poco permeable (permeabilidad muy baja) de acuerdo a las Tablas 62 y 63.

 Tabla 62. Clasificación de los Suelos según la Permeabilidad.

Grado de permeabilidad	Valore de K(mm/h)	Tipo de Suelo
Muy Permeable Medianamente Permeable	$>10^{-1}$ 10^{-1} a 10^{-3}	Grava y arena gruesa Arena Mediana
Poco permeable	$10^{-3} a 10^{-5}$	Arena fina Limosa
Muy poco permeable	$10^{-5} a 10^{-7}$	Limo
Impermeable	10 a 10	Arcilla

Fuente: Fratelli. M (1993)

Grado de Permeabilidad	Valor de K (cm/seg)	Textura del Suelo
Elevada	Superior a 10-1	Grava media a gruesa
Media	10-1 - 10-3	Grava fina, arena media a fina, duras
Baja	10-3 - 10-5	Arena muy fina, SM Limos a Loes
Muy Baja	10-5 - 10-7	Limos densos, ML, Arcillas, CL
Prácticamente Impermeable	Menor de 10-7	CL a CH Homogéneo

 Tabla 63. Clasificación de los Suelos según sus Coeficientes Permeabilidad.

Fuente: Tomado de Terzaghi k. y Peck R.B. (1967)

Objetivo Nº 3. Representar las propiedades físicas del suelo mediante herramientas contenidas en software de Sistemas de Información geográfico (SIG).

Las respuestas para este objetivo son las siguientes:

La representación de las propiedades físicas del suelo mediante mapas se encuentra en los anexos.

CONCLUSIONES

- Mas de la mitad del área del sector lo conforman parcelas de uso agrícola, una decima parte no se encuentra clasificada, y el resto de las áreas se encuentra distribuidas en uso avícola, residencial, ganadero e industrial.
- Se obtuvieron gravedades específicas dentro de los rangos establecidos por Atterberg para tipos de suelo con presencia de limos orgánicos para un estrato de 10 cm.
- La presencia de limos en el sector fue el porcentaje más alto en comparación con los con los valores correspondientes de arena y arcilla
- Se determino que las partículas son de grano fino, por tanto se podría descartar los suelos de granos grueso, en donde más de la mitad del material pasa por el tamiz N° 200
- Al graficar los valores (grafico de plasticidad de casa grande) se observo que las muestras estuvieron por debajo de la línea A, en el área que denota una clasificación de limos orgánicos (OL).
- De acuerdo a los parámetros de corte del suelo (cohesión y ángulo de fricción) el suelo se clasifico en limo orgánico.
- La porosidad determinada se observó que estuvo dentro los rangos aceptables.
- Los valores de relación de vacíos fueron aceptables, a pesar de las limitaciones de la toma de muestras.
- El contenido de humedad de sitio, presentaron variabilidad que se asocia a los riegos de las parcelas.

REFERENCIAS BIBLIOGRÁFICAS

- DEOBOLD B. VAN DALEN Y WILLIAM J. MEYER (1994). "Manual de técnica de la investigación educacional". Editorial Noema.
- **FRATELLI, MARÍA GRACIELA.** (1993). Suelo, Fundaciones y Muros. Bonalde Editores. Caracas - Venezuela.
- GLENN, N.D. (1977). Cohortanaíysis. Beverly Huís, CA: Sage Publications Inc. Series: "Quantitative Applications in the Social Sciences", número 5.
- **GUÍAS DE LABORATORIO DE SUELOS**, Universidad de Carabobo, Facultad de Ingeniería.
- **KERLINGER, FN.** (1979). "*Enfoque* "Conceptual de la investigación del comportamiento". México, D.F.: Nueva Editorial Interamericana. Capitulo número 8 ('Investigación experimental y no experimental").
- **KESSLER, R.C. y GREENBERG**, D.F. (1981). "Linear panel anaíysis: Models of quantitative change". London, UK: Academic Press, Inc. (LONDON) LTD.
- MARKUS, G.B. (1979). "Analyzing panel data" Beverly Huís, CA: Sage Publications mc: Series: "Quantitative Applications in the Social Sciences", número 18.
- MANUAL "Teoría y ejercicios de Arcgis I" (2008) Publicado por ESRI de Venezuela.
- Manual "Introducción a Arcgis II" (2008) Publicado por ESRI de Venezuela
- MANUAL "Teoría y ejercicios de Arcgis II" (2008) Publicado por ESRI de Venezuela.
- LAMBE Y WHITMAN. (1994). Mecánica de los Suelos. Editorial Limusa, S.A. D.F. México.

- OSVALDO ANDRADE, ANDRÉS PALMA, EDUARDO AQUEVEDO, GABRIELA ELGUETA, HEINRICH VON BAER, JUAN PABLO VALENZUELA, MARIO ROSALES (Diciembre, 2006), Agenda Pública, Edición Año V / Nº 10, Revista Electrónica. Extraído el 28 de Septiembre de 2007.
- **PIERRE Y JULIE** (1995) "Erosión y sedimentación".
- **THOMPSON LUIS M. Y FREDERICK R TROEH.** (1988) "Los suelos y su fertilidad". Editorial Revertè, 4ta Edición.
- **BRAJA DAS** (2001). "Mecánica de los suelos". Editorial Arte, 2da Edición.
- <u>http://www.monografias.com/trabajos-pdf/suelos-productividad-agricola/suelos-productividad-agricola.pdf.</u>
- <u>http://es.wikipedia.org/wiki/Aprendizaje.</u>
- <u>http://www.scielo.org.co/scielo.php?pid=S0304-</u> 28472006000100009&script=sci_artte**xt**.
- <u>http://sidai.ucv.ve/consultar2.php?id_proy=425&financia=&nombreusuario=&empr</u> esa=&fechadesde=&fechasta...%20-%209k
- <u>http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1561-</u> 08882005000200005&lng=es&nrm=iso&tlng=es.
- (Protagonismo del estado de la lucha contra la erosión del suelo y desertización por Andrés crespo llenes doctor en derecho, abogado) http://es.wikipedia.org/wiki/Desertificaci%C3%B3n
- La declaración de los parlamentarios puede encontrarse en: UPI, Informe del Comité de Desarrollo Sostenible, CL/168/13(d)-R.1, 14 de marzo de 2001. <u>http://www.cica.es/aliens/gimadus/04/estado_lucha_erosion.htm</u>

- Informe Linking Poverty Reduction and Environmental Management: Policy Challenges and Opportunities, editado por el Departamento de Desarrollo Internacional del Reino Unido, la Dirección General de Desarrollo de la Comisión Europea, el Programa de las Naciones Unidas para el Desarrollo y el Banco Mundial, Washington, julio de 2002. http://www.oas.org/sanjuan/spanish/documentos/adt/informacion/suelo.html
- III Informe sobre el Programa de Acción Nacional contra la Desertificación. España. Abril 2006. <u>http://www.un.org/spanish/millenniumgoals/takeaction.shtml</u>
- ONU, 1992.